diff --git a/R/predict_mixture.R b/R/predict_mixture.R index 253503e9f7cbfa3f036508471a34493fd557e5c5..a9d343451e40f22d18acbd5a4ee66f706d6612a5 100644 --- a/R/predict_mixture.R +++ b/R/predict_mixture.R @@ -44,7 +44,9 @@ predict_mixture <- function(model_1, length(concentration_2) == 1, !is.na(concentration_2), proportion_ca >= 0, - proportion_ca <= 1 + proportion_ca <= 1, + model_1$args$p == model_2$args$p, + model_1$args$q == model_2$args$q ) predicted_model_1 <- predict_ecxsys(model_1, concentration_1) @@ -67,6 +69,7 @@ predict_mixture <- function(model_1, model_1$effect_tox_mod, data.frame(concentration = concentration_1 + concentration_2_equivalent) ) + stress_tox_ca_1 <- effect_to_stress(effect_tox_ca_1) response_level_1 <- 100 - predicted_model_1$effect_tox / model_1$args$effect_max * 100 response_level_1 <- clamp(response_level_1, 1e-10, 100 - 1e-10) @@ -79,8 +82,9 @@ predict_mixture <- function(model_1, model_2$effect_tox_mod, data.frame(concentration = concentration_2 + concentration_1_equivalent) ) + stress_tox_ca_2 <- effect_to_stress(effect_tox_ca_2) - stress_tox_ca <- effect_to_stress(effect_tox_ca_1 * 0.5 + effect_tox_ca_2 * 0.5) + stress_tox_ca <- (stress_tox_ca_1 + stress_tox_ca_2) / 2 # sys ----------------------------------------------------------------- sys_1 <- predict(model_1$sys_tox_mod, data.frame(stress_tox = stress_tox_ca))