diff --git a/tests/funcs/test_harm_funcs.py b/tests/funcs/test_harm_funcs.py index 7cc99a7cf2765691a54a23b5173bf7ba3ad5a4a9..e09177a01c7c8ee83c1eae8fba5aaba7737d106f 100644 --- a/tests/funcs/test_harm_funcs.py +++ b/tests/funcs/test_harm_funcs.py @@ -83,7 +83,7 @@ def test_gridInterpolation(data, method): ('interpolate', dict(method="spline")), ('aggregate', dict(value_func=np.nansum, method="nagg")), ]) -def test_flagsSurviveReshaping(reshaper): +def test_flagsSurviveReshaping(func, kws): """ flagging -> reshaping -> test (flags also was reshaped correctly) """ @@ -112,6 +112,8 @@ def test_harmSingleVarIntermediateFlagging(data, reshaper): pre_flagger = flagger.copy() data, flagger = linear(data, field, flagger, freq="15min") + checkDataFlaggerInvariants(data, flagger, field, identical=True) + assert data[field].index.freq == pd.Timedelta('15min') # flag something bad flagger[data[field].index[3:4], field] = BAD @@ -172,9 +174,12 @@ def test_harmSingleVarInterpolationAgg(data, params, expected): method, freq = params data_harm, flagger_harm = aggregate(data, field, flagger, freq, value_func=np.sum, method=method) + checkDataFlaggerInvariants(data_harm, flagger_harm, field, identical=True) + assert data_harm[field].index.freq == pd.Timedelta(freq) assert data_harm[field].equals(expected) data_deharm, flagger_deharm = mapToOriginal(data_harm, "data", flagger_harm, method="inverse_" + method) + checkDataFlaggerInvariants(data_harm, flagger_harm, field, identical=True) assert data_deharm[field].equals(pre_data[field]) assert flagger_deharm[field].equals(pre_flaggger[field])