diff --git a/saqc/lib/ts_operators.py b/saqc/lib/ts_operators.py index e7f0402c8b6ff5d98a8f09ee1006b9a3008bf442..df63428a697b7e21c9bf536179cbabb25541e1d0 100644 --- a/saqc/lib/ts_operators.py +++ b/saqc/lib/ts_operators.py @@ -124,24 +124,12 @@ def kNN(in_arr, n_neighbors, algorithm="ball_tree", metric='minkowski', p=2, rad i += 1 return dist, np.array([]) -def kNNMaxGap(in_arr, n_neighbors=10, algorithm="ball_tree"): - # searches for the "n_neighbors" nearest neighbors of every value in "in_arr" - # and then returns the distance to the neighbor with the "maximum" Gap to its - # predecessor in the neighbor hierarchy - in_arr = np.asarray(in_arr) - dist, *_ = kNN(in_arr, n_neighbors, algorithm=algorithm) - sample_size = dist.shape[0] - to_gap = np.append(np.array([[0] * sample_size]).T, dist, axis=1) - max_gap_ind = np.diff(to_gap, axis=1).argmax(axis=1) - return dist[range(0, sample_size), max_gap_ind] - - -def kNNSum(in_arr, n_neighbors=10, algorithm="ball_tree"): - # searches for the "n_neighbors" nearest neighbors of every value in "in_arr" - # and assigns that value the summed up distances to this neighbors - in_arr = np.asarray(in_arr) - dist, *_ = kNN(in_arr, n_neighbors, algorithm=algorithm) - return dist.sum(axis=1) + +def maxGap(in_arr): + """ + Search for the maximum gap in an array of sorted distances (func for scoring kNN distance matrice) + """ + return max(in_arr[0], max(np.diff(in_arr))) @nb.njit