diff --git a/saqc/funcs/generic.py b/saqc/funcs/generic.py
index ed64f7ca0401d17d6b2669f9c2d9b4bf04c3160a..862b3b98171f6fababe8d5bd6cfd19367cb125d6 100644
--- a/saqc/funcs/generic.py
+++ b/saqc/funcs/generic.py
@@ -21,13 +21,33 @@ _OP = {'<': op.lt, '<=': op.le, '==': op.eq, '!=': op.ne, '>': op.gt, '>=': op.g
 
 
 def _dslIsFlagged(
-        flagger: Flagger, var: pd.Series, flag: float = UNFLAGGED, comparator: str = ">"
+        flagger: Flagger, var: pd.Series, flag: float = None, comparator: str = None
 ) -> Union[pd.Series, DictOfSeries]:
     """
     helper function for `flag`
+
+    Param Combinations
+    ------------------
+    - ``isflagged('var')``              : show me (anything) flagged
+    - ``isflagged('var', DOUBT)``       : show me ``flags >= DOUBT``
+    - ``isflagged('var', DOUBT, '==')`` : show me ``flags == DOUBT``
+
+    Raises
+    ------
+    ValueError: if `comparator` is passed but no `flag` vaule. Eg. ``isflagged('var', comparator='>=')``
     """
-    comparison = _OP[comparator]
-    return comparison(flagger[var.name], flag)
+    if flag is None:
+        if comparator is not None:
+            raise ValueError('if `comparator` is used, explicitly pass a `flag` level.')
+        flag = UNFLAGGED
+        comparator = '>'
+
+    # default
+    if comparator is None:
+        comparator = '>='
+
+    _op = _OP[comparator]
+    return _op(flagger[var.name], flag)
 
 
 def _execGeneric(flagger: Flagger, data: DictOfSeries, func: Callable[[pd.Series], pd.Series], field: str,
diff --git a/test/common.py b/test/common.py
index f774cd5ed17f09447b7ffdc6344a43f2b522bca2..f61ddac3e34a142049a383ec6bb7fab870f92acd 100644
--- a/test/common.py
+++ b/test/common.py
@@ -2,32 +2,11 @@
 # -*- coding: utf-8 -*-
 
 import io
-from typing import get_type_hints
-
 import numpy as np
 import pandas as pd
 import dios
 
-from hypothesis.strategies import (
-    lists,
-    sampled_from,
-    composite,
-    from_regex,
-    sampled_from,
-    datetimes,
-    integers,
-    register_type_strategy,
-    from_type,
-)
-from hypothesis.extra.numpy import arrays, from_dtype
-from hypothesis.strategies._internal.types import _global_type_lookup
-
-from dios import DictOfSeries
-
 from saqc.common import *
-from saqc.core.register import FUNC_MAP
-from saqc.core.lib import SaQCFunction
-from saqc.lib.types import FreqString, ColumnName, IntegerWindow
 from saqc.flagger import Flagger, initFlagsLike
 
 
@@ -63,141 +42,3 @@ def writeIO(content):
     return f
 
 
-MAX_EXAMPLES = 50 #100000
-
-
-@composite
-def dioses(draw, min_cols=1):
-    """
-    initialize data according to the current restrictions
-    """
-    # NOTE:
-    # The following restriction showed up and should be enforced during init:
-    # - Column names need to satisify the following regex: [A-Za-z0-9_-]+
-    # - DatetimeIndex needs to be sorted
-    # - Integer values larger than 2**53 lead to numerical instabilities during
-    #   the integer->float->integer type conversion in _maskData/_unmaskData.
-
-    cols = draw(lists(columnNames(), unique=True, min_size=min_cols))
-    columns = {
-        c: draw(dataSeries(min_size=3))
-        for c in cols
-    }
-    return DictOfSeries(columns)
-
-import numbers
-
-@composite
-def dataSeries(draw, min_size=0, max_size=100, dtypes=("float32", "float64", "int32", "int64")):
-    if np.isscalar(dtypes):
-        dtypes = (dtypes,)
-
-    dtype = np.dtype(draw(sampled_from(dtypes)))
-    if issubclass(dtype.type, numbers.Integral):
-        info = np.iinfo(dtype)
-    elif issubclass(dtype.type, numbers.Real):
-        info = np.finfo(dtype)
-    else:
-        raise ValueError("only numerical dtypes are supported")
-    # we don't want to fail just because of overflows
-    elements = from_dtype(dtype, min_value=info.min+1, max_value=info.max-1)
-
-    index = draw(daterangeIndexes(min_size=min_size, max_size=max_size))
-    values = draw(arrays(dtype=dtype, elements=elements, shape=len(index)))
-    return pd.Series(data=values, index=index)
-
-
-@composite
-def columnNames(draw):
-    return draw(from_regex(r"[A-Za-z0-9_-]+", fullmatch=True))
-
-
-@composite
-def flaggers(draw, data):
-    """
-    initialize a flagger and set some flags
-    """
-    # flagger = draw(sampled_from(TESTFLAGGER)).initFlags(data)
-    flagger = initFlagsLike(data)
-    for col, srs in data.items():
-        loc_st = lists(sampled_from(sorted(srs.index)), unique=True, max_size=len(srs)-1)
-        flagger[draw(loc_st), col] = BAD
-    return flagger
-
-
-@composite
-def functions(draw, module: str=None):
-    samples = tuple(FUNC_MAP.values())
-    if module:
-        samples = tuple(f for f in samples if f.name.startswith(module))
-    # samples = [FUNC_MAP["drift.correctExponentialDrift"]]
-    return draw(sampled_from(samples))
-
-
-@composite
-def daterangeIndexes(draw, min_size=0, max_size=100):
-    min_date = pd.Timestamp("1900-01-01").to_pydatetime()
-    max_date = pd.Timestamp("2099-12-31").to_pydatetime()
-    start = draw(datetimes(min_value=min_date, max_value=max_date))
-    periods = draw(integers(min_value=min_size, max_value=max_size))
-    freq = draw(sampled_from(["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]))
-    return pd.date_range(start, periods=periods, freq=freq)
-
-
-@composite
-def frequencyStrings(draw, _):
-    freq = draw(sampled_from(["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]))
-    mult = draw(integers(min_value=1, max_value=10))
-    value = f"{mult}{freq}"
-    return value
-
-@composite
-def dataFieldFlagger(draw):
-    data = draw(dioses())
-    field = draw(sampled_from(sorted(data.columns)))
-    flagger = draw(flaggers(data))
-    return data, field, flagger
-
-
-@composite
-def functionCalls(draw, module: str=None):
-    func = draw(functions(module))
-    kwargs = draw(functionKwargs(func))
-    return func, kwargs
-
-
-@composite
-def functionKwargs(draw, func: SaQCFunction):
-    data = draw(dioses())
-    field = draw(sampled_from(sorted(data.columns)))
-
-    kwargs = {
-        "data": data,
-        "field": field,
-        "flagger": draw(flaggers(data))
-    }
-
-    column_name_strategy = lambda _: sampled_from(sorted(c for c in data.columns if c != field))
-    interger_window_strategy = lambda _: integers(min_value=1, max_value=len(data[field]) - 1)
-
-    register_type_strategy(FreqString, frequencyStrings)
-    register_type_strategy(ColumnName, column_name_strategy)
-    register_type_strategy(IntegerWindow, interger_window_strategy)
-
-    for k, v in get_type_hints(func.func).items():
-        if k not in {"data", "field", "flagger", "return"}:
-            value = draw(from_type(v))
-            # if v is TimestampColumnName:
-            #     value = draw(columnNames())
-            #     # we don't want to overwrite 'field'
-            #     assume(value != field)
-            #     # let's generate and add a timestamp column
-            #     data[value] = draw(dataSeries(dtypes="datetime64[ns]", length=len(data[field])))
-            #     # data[value] = draw(dataSeries(dtypes="datetime64[ns]"))
-            kwargs[k] = value
-
-    del _global_type_lookup[FreqString]
-    del _global_type_lookup[ColumnName]
-    del _global_type_lookup[IntegerWindow]
-
-    return kwargs
diff --git a/test/funcs/test_generic_config_functions.py b/test/funcs/test_generic_config_functions.py
index 7677c3c279d30af1c2ac2348d9ec50251af2f74c..81e91d6430e019231537413862b8cc8305c105db 100644
--- a/test/funcs/test_generic_config_functions.py
+++ b/test/funcs/test_generic_config_functions.py
@@ -2,22 +2,20 @@
 # -*- coding: utf-8 -*-
 
 import ast
-
 import pytest
 import numpy as np
 import pandas as pd
-
-from dios import DictOfSeries
-
-from test.common import TESTFLAGGER, TESTNODATA, initData, writeIO
+import dios
 
 from saqc.common import *
 from saqc.flagger import Flagger, initFlagsLike
 from saqc.core.visitor import ConfigFunctionParser
 from saqc.core.config import Fields as F
 from saqc.core.register import register
-from saqc import SaQC
 from saqc.funcs.generic import _execGeneric
+from saqc import SaQC
+
+from test.common import TESTNODATA, initData, writeIO
 
 
 @pytest.fixture
@@ -32,7 +30,7 @@ def data_diff():
     col1 = data[data.columns[1]]
     mid = len(col0) // 2
     offset = len(col0) // 8
-    return DictOfSeries(data={col0.name: col0.iloc[: mid + offset], col1.name: col1.iloc[mid - offset :],})
+    return dios.DictOfSeries(data={col0.name: col0.iloc[: mid + offset], col1.name: col1.iloc[mid - offset :],})
 
 
 def _compileGeneric(expr, flagger):
@@ -41,8 +39,8 @@ def _compileGeneric(expr, flagger):
     return kwargs["func"]
 
 
-@pytest.mark.parametrize("flagger", TESTFLAGGER)
-def test_missingIdentifier(data, flagger):
+def test_missingIdentifier(data):
+    flagger = Flagger()
 
     # NOTE:
     # - the error is only raised at runtime during parsing would be better
@@ -57,9 +55,8 @@ def test_missingIdentifier(data, flagger):
             _execGeneric(flagger, data, func, field="", nodata=np.nan)
 
 
-@pytest.mark.parametrize("flagger", TESTFLAGGER)
-def test_syntaxError(flagger):
-
+def test_syntaxError():
+    flagger = Flagger()
     tests = [
         "range(x=5",
         "rangex=5)",
@@ -106,8 +103,7 @@ def test_comparisonOperators(data):
         assert np.all(result == expected)
 
 
-@pytest.mark.parametrize("flagger", TESTFLAGGER)
-def test_arithmeticOperators(data, flagger):
+def test_arithmeticOperators(data):
     flagger = initFlagsLike(data)
     var1, *_ = data.columns
     this = data[var1]
@@ -127,8 +123,7 @@ def test_arithmeticOperators(data, flagger):
         assert np.all(result == expected)
 
 
-@pytest.mark.parametrize("flagger", TESTFLAGGER)
-def test_nonReduncingBuiltins(data, flagger):
+def test_nonReduncingBuiltins(data):
     flagger = initFlagsLike(data)
     var1, *_ = data.columns
     this = var1
@@ -147,10 +142,8 @@ def test_nonReduncingBuiltins(data, flagger):
         assert (result == expected).all()
 
 
-@pytest.mark.parametrize("flagger", TESTFLAGGER)
 @pytest.mark.parametrize("nodata", TESTNODATA)
-def test_reduncingBuiltins(data, flagger, nodata):
-
+def test_reduncingBuiltins(data, nodata):
     data.loc[::4] = nodata
     flagger = initFlagsLike(data)
     var1 = data.columns[0]
@@ -171,10 +164,10 @@ def test_reduncingBuiltins(data, flagger, nodata):
         assert result == expected
 
 
-@pytest.mark.parametrize("flagger", TESTFLAGGER)
 @pytest.mark.parametrize("nodata", TESTNODATA)
-def test_ismissing(data, flagger, nodata):
+def test_ismissing(data, nodata):
 
+    flagger = initFlagsLike(data)
     data.iloc[: len(data) // 2, 0] = np.nan
     data.iloc[(len(data) // 2) + 1 :, 0] = -9999
     this = data.iloc[:, 0]
@@ -190,9 +183,8 @@ def test_ismissing(data, flagger, nodata):
         assert np.all(result == expected)
 
 
-@pytest.mark.parametrize("flagger", TESTFLAGGER)
 @pytest.mark.parametrize("nodata", TESTNODATA)
-def test_bitOps(data, flagger, nodata):
+def test_bitOps(data, nodata):
     var1, var2, *_ = data.columns
     this = var1
 
@@ -220,14 +212,26 @@ def test_isflagged(data):
         (f"isflagged({var1})", flagger[var1] > UNFLAGGED),
         (f"isflagged({var1}, flag=BAD)", flagger[var1] >= BAD),
         (f"isflagged({var1}, UNFLAGGED, '==')", flagger[var1] == UNFLAGGED),
-        (f"~isflagged({var2})", ~(flagger[var2] > UNFLAGGED)),
-        (f"~({var2}>999) & (~isflagged({var2}))", ~(data[var2] > 999) & ~(flagger[var2] > UNFLAGGED)),
+        (f"~isflagged({var2})", flagger[var2] == UNFLAGGED),
+        (f"~({var2}>999) & (~isflagged({var2}))", ~(data[var2] > 999) & (flagger[var2] == UNFLAGGED)),
     ]
 
-    for test, expected in tests:
-        func = _compileGeneric(f"generic.flag(func={test}, flag=BAD)", flagger)
-        result = _execGeneric(flagger, data, func, field=None, nodata=np.nan)
-        assert np.all(result == expected)
+    for i, (test, expected) in enumerate(tests):
+        try:
+            func = _compileGeneric(f"generic.flag(func={test}, flag=BAD)", flagger)
+            result = _execGeneric(flagger, data, func, field=None, nodata=np.nan)
+            assert np.all(result == expected)
+        except Exception:
+            print(i, test)
+            raise
+
+    # test bad combination
+    for comp in ['>', '>=', '==', '!=', '<', '<=']:
+        fails = f"isflagged({var1}, comparator='{comp}')"
+
+        func = _compileGeneric(f"generic.flag(func={fails}, flag=BAD)", flagger)
+        with pytest.raises(ValueError):
+            _execGeneric(flagger, data, func, field=None, nodata=np.nan)
 
 
 def test_variableAssignments(data):
@@ -249,6 +253,7 @@ def test_variableAssignments(data):
     assert set(result_flagger.columns) == set(data.columns) | {"dummy1", "dummy2"}
 
 
+# TODO: why this must(!) fail ? - a comment would be helpful
 @pytest.mark.xfail(strict=True)
 def test_processMultiple(data_diff):
     var1, var2, *_ = data_diff.columns
diff --git a/testsfuzzy/__init__.py b/testsfuzzy/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4265cc3e6c16c09774190fa55d609cd9fe0808e4
--- /dev/null
+++ b/testsfuzzy/__init__.py
@@ -0,0 +1 @@
+#!/usr/bin/env python
diff --git a/testsfuzzy/init.py b/testsfuzzy/init.py
new file mode 100644
index 0000000000000000000000000000000000000000..adbbffdc5cd2df8920348cb400a938337eee8087
--- /dev/null
+++ b/testsfuzzy/init.py
@@ -0,0 +1,167 @@
+#!/usr/bin/env python
+
+
+import numbers
+import dios
+import numpy as np
+import pandas as pd
+from typing import get_type_hints
+
+from hypothesis.strategies import (
+    lists,
+    sampled_from,
+    composite,
+    from_regex,
+    sampled_from,
+    datetimes,
+    integers,
+    register_type_strategy,
+    from_type,
+)
+from hypothesis.extra.numpy import arrays, from_dtype
+from hypothesis.strategies._internal.types import _global_type_lookup
+
+from saqc.common import *
+from saqc.core.register import FUNC_MAP
+from saqc.core.lib import SaQCFunction
+from saqc.lib.types import FreqString, ColumnName, IntegerWindow
+from saqc.flagger import Flagger, initFlagsLike
+
+MAX_EXAMPLES = 50
+# MAX_EXAMPLES = 100000
+
+
+@composite
+def dioses(draw, min_cols=1):
+    """
+    initialize data according to the current restrictions
+    """
+    # NOTE:
+    # The following restriction showed up and should be enforced during init:
+    # - Column names need to satisify the following regex: [A-Za-z0-9_-]+
+    # - DatetimeIndex needs to be sorted
+    # - Integer values larger than 2**53 lead to numerical instabilities during
+    #   the integer->float->integer type conversion in _maskData/_unmaskData.
+
+    cols = draw(lists(columnNames(), unique=True, min_size=min_cols))
+    columns = {
+        c: draw(dataSeries(min_size=3))
+        for c in cols
+    }
+    return dios.DictOfSeries(columns)
+
+
+@composite
+def dataSeries(draw, min_size=0, max_size=100, dtypes=("float32", "float64", "int32", "int64")):
+    if np.isscalar(dtypes):
+        dtypes = (dtypes,)
+
+    dtype = np.dtype(draw(sampled_from(dtypes)))
+    if issubclass(dtype.type, numbers.Integral):
+        info = np.iinfo(dtype)
+    elif issubclass(dtype.type, numbers.Real):
+        info = np.finfo(dtype)
+    else:
+        raise ValueError("only numerical dtypes are supported")
+    # we don't want to fail just because of overflows
+    elements = from_dtype(dtype, min_value=info.min + 1, max_value=info.max - 1)
+
+    index = draw(daterangeIndexes(min_size=min_size, max_size=max_size))
+    values = draw(arrays(dtype=dtype, elements=elements, shape=len(index)))
+    return pd.Series(data=values, index=index)
+
+
+@composite
+def columnNames(draw):
+    return draw(from_regex(r"[A-Za-z0-9_-]+", fullmatch=True))
+
+
+@composite
+def flaggers(draw, data):
+    """
+    initialize a flagger and set some flags
+    """
+    flagger = initFlagsLike(data)
+    for col, srs in data.items():
+        loc_st = lists(sampled_from(sorted(srs.index)), unique=True, max_size=len(srs) - 1)
+        flagger[draw(loc_st), col] = BAD
+    return flagger
+
+
+@composite
+def functions(draw, module: str = None):
+    samples = tuple(FUNC_MAP.values())
+    if module:
+        samples = tuple(f for f in samples if f.name.startswith(module))
+    # samples = [FUNC_MAP["drift.correctExponentialDrift"]]
+    return draw(sampled_from(samples))
+
+
+@composite
+def daterangeIndexes(draw, min_size=0, max_size=100):
+    min_date = pd.Timestamp("1900-01-01").to_pydatetime()
+    max_date = pd.Timestamp("2099-12-31").to_pydatetime()
+    start = draw(datetimes(min_value=min_date, max_value=max_date))
+    periods = draw(integers(min_value=min_size, max_value=max_size))
+    freq = draw(sampled_from(["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]))
+    return pd.date_range(start, periods=periods, freq=freq)
+
+
+@composite
+def frequencyStrings(draw, _):
+    freq = draw(sampled_from(["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]))
+    mult = draw(integers(min_value=1, max_value=10))
+    value = f"{mult}{freq}"
+    return value
+
+
+@composite
+def dataFieldFlagger(draw):
+    data = draw(dioses())
+    field = draw(sampled_from(sorted(data.columns)))
+    flagger = draw(flaggers(data))
+    return data, field, flagger
+
+
+@composite
+def functionCalls(draw, module: str = None):
+    func = draw(functions(module))
+    kwargs = draw(functionKwargs(func))
+    return func, kwargs
+
+
+@composite
+def functionKwargs(draw, func: SaQCFunction):
+    data = draw(dioses())
+    field = draw(sampled_from(sorted(data.columns)))
+
+    kwargs = {
+        "data": data,
+        "field": field,
+        "flagger": draw(flaggers(data))
+    }
+
+    column_name_strategy = lambda _: sampled_from(sorted(c for c in data.columns if c != field))
+    interger_window_strategy = lambda _: integers(min_value=1, max_value=len(data[field]) - 1)
+
+    register_type_strategy(FreqString, frequencyStrings)
+    register_type_strategy(ColumnName, column_name_strategy)
+    register_type_strategy(IntegerWindow, interger_window_strategy)
+
+    for k, v in get_type_hints(func.func).items():
+        if k not in {"data", "field", "flagger", "return"}:
+            value = draw(from_type(v))
+            # if v is TimestampColumnName:
+            #     value = draw(columnNames())
+            #     # we don't want to overwrite 'field'
+            #     assume(value != field)
+            #     # let's generate and add a timestamp column
+            #     data[value] = draw(dataSeries(dtypes="datetime64[ns]", length=len(data[field])))
+            #     # data[value] = draw(dataSeries(dtypes="datetime64[ns]"))
+            kwargs[k] = value
+
+    del _global_type_lookup[FreqString]
+    del _global_type_lookup[ColumnName]
+    del _global_type_lookup[IntegerWindow]
+
+    return kwargs
diff --git a/testsfuzzy/test_functions.py b/testsfuzzy/test_functions.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc3caa00ed468731071578df148f8ed656290e0e
--- /dev/null
+++ b/testsfuzzy/test_functions.py
@@ -0,0 +1,115 @@
+#! /usr/bin/env python
+# -*- coding: utf-8 -*-
+
+
+from hypothesis import given, settings
+from hypothesis.strategies import data, from_type
+
+from saqc.core.register import FUNC_MAP
+from testsfuzzy.init import MAX_EXAMPLES, functionKwargs
+
+
+@settings(max_examples=MAX_EXAMPLES, deadline=None)
+@given(drawer=data())
+def callWontBreak(drawer, func_name: str):
+    func = FUNC_MAP[func_name]
+    kwargs = drawer.draw(functionKwargs(func))
+
+    # TODO: workaround until `flag` is explicitly exposed in signature
+    flag = drawer.draw(from_type(float))
+    kwargs.setdefault('flag', flag)
+
+    func(**kwargs)
+
+
+# breaks
+# ------
+
+# NOTE:
+# needs a more elaborated test, as it calls into
+# `changepoints.assignChangePointClusters`
+def test_breaks_flagJumps():
+    callWontBreak("breaks.flagJumps")
+
+
+def test_breaks_flagIsolated():
+    callWontBreak("breaks.flagIsolated")
+
+
+def test_breaks_flagMissing():
+    callWontBreak("breaks.flagMissing")
+
+
+# constants
+# ---------
+
+def test_constats_flagConstats():
+    callWontBreak("constants.flagConstants")
+
+
+def test_constants_flagByVariance():
+    callWontBreak("constants.flagByVariance")
+
+
+# flagtools
+# ---------
+
+def test_flagtools_clearFlags():
+    callWontBreak("flagtools.clearFlags")
+
+
+def test_flagtools_forceFlags():
+    callWontBreak("flagtools.clearFlags")
+
+
+# NOTE:
+# all of the following tests fail to sample data for `flag=typing.Any`
+# with the new flagger in place this should be easy to fix
+def test_flagtools_flagGood():
+    callWontBreak("flagtools.flagGood")
+
+
+def test_flagtools_flagUnflagged():
+    callWontBreak("flagtools.flagUnflagged")
+
+
+# NOTE: the problem is `mflag` which can be Any
+# def test_flagtools_flagManual():
+#     callWontBreak("flagtools.flagManual")
+
+
+# outliers
+# --------
+#
+# NOTE: needs a more elaborated test, I guess
+# def test_outliers_flagByStray():
+#     callWontBreak("outliers.flagByStray")
+
+
+# NOTE: fails in a strategy, maybe `Sequence[ColumnName]`
+# def test_outliers_flagMVScores():
+#     callWontBreak("outliers.flagMVScores")
+
+
+# NOTE:
+# fails as certain combinations of frquency strings don't make sense
+# a more elaborate test is needed
+# def test_outliers_flagRaise():
+#     callWontBreak("outliers.flagRaise")
+#
+#
+# def test_outliers_flagMAD():
+#     callWontBreak("outliers.flagMAD")
+#
+#
+# def test_outliers_flagByGrubbs():
+#     callWontBreak("outliers.flagByGrubbs")
+#
+#
+# def test_outliers_flagRange():
+#     callWontBreak("outliers.flagRange")
+
+
+# NOTE: fails in a strategy, maybe `Sequence[ColumnName]`
+# def test_outliers_flagCrossStatistic():
+#     callWontBreak("outliers.flagCrossStatistic")
diff --git a/test/core/test_masking.py b/testsfuzzy/test_masking.py
similarity index 98%
rename from test/core/test_masking.py
rename to testsfuzzy/test_masking.py
index 6236a55e2a0677ea59cbee6eb6ebaeca977838bd..b1eb5861e40581b4365eede2cadeb654d419ec8f 100644
--- a/test/core/test_masking.py
+++ b/testsfuzzy/test_masking.py
@@ -16,7 +16,7 @@ from saqc.common import *
 from saqc.flagger import Flagger, initFlagsLike
 from saqc.core.register import _maskData, _unmaskData
 
-from test.common import dataFieldFlagger, MAX_EXAMPLES
+from testsfuzzy.init import dataFieldFlagger, MAX_EXAMPLES
 
 
 logging.disable(logging.CRITICAL)