diff --git a/docs/cookbooks/MultivariateFlagging.rst b/docs/cookbooks/MultivariateFlagging.rst index c7297ade17f4497c58b3ae5766beb2433c8ad702..ac09cdd1aebbf3371b4291fb689262c9a35092f2 100644 --- a/docs/cookbooks/MultivariateFlagging.rst +++ b/docs/cookbooks/MultivariateFlagging.rst @@ -1,4 +1,4 @@ -.. SPDX-FileCopyrightText: 2021 Helmholtz-Zentrum für Umweltforschung GmbH - UFZ +.. SPDX-FileCopyrightTextText: 2021 Helmholtz-Zentrumrum für Umweltforschung GmbH - UFZ .. .. SPDX-License-Identifier: GPL-3.0-or-later @@ -347,7 +347,7 @@ correlated with relatively high *kNNscores*, we could try to calculate a thresho `STRAY <https://arxiv.org/pdf/1908.04000.pdf>`_ algorithm, which is available as the method: :py:meth:`~saqc.SaQC.flagByStray`. This method will mark some samples of the `kNNscore` variable as anomaly. Subsequently we project this marks (or *flags*) on to the *sac* variable with a call to -:py:meth:`~saqc.SaQC.transferFlags`. For the sake of demonstration, we also project the flags +:py:meth:`~saqc.SaQC.concatFlags`. For the sake of demonstration, we also project the flags on the normalized *sac* and plot the flagged values in the *sac254_norm* - *level_norm* feature space. @@ -355,8 +355,8 @@ on the normalized *sac* and plot the flagged values in the *sac254_norm* - *leve .. doctest:: exampleMV >>> qc = qc.flagByStray(field='kNNscores', freq='30D', alpha=.3) - >>> qc = qc.transferFlags(field='kNNscores', target='sac254_corrected', label='STRAY') - >>> qc = qc.transferFlags(field='kNNscores', target='sac254_norm', label='STRAY') + >>> qc = qc.concatFlags(field='kNNscores', target='sac254_corrected', label='STRAY') + >>> qc = qc.concatFlags(field='kNNscores', target='sac254_norm', label='STRAY') >>> qc.plot('sac254_corrected', xscope='2016-11') # doctest:+SKIP >>> qc.plot('sac254_norm', phaseplot='level_norm', xscope='2016-11') # doctest:+SKIP @@ -365,8 +365,8 @@ on the normalized *sac* and plot the flagged values in the *sac254_norm* - *leve :include-source: False qc = qc.flagByStray(field='kNNscores', freq='30D', alpha=.3) - qc = qc.transferFlags(field='kNNscores', target='sac254_corrected', label='STRAY') - qc = qc.transferFlags(field='kNNscores', target='sac254_norm', label='STRAY') + qc = qc.concatFlags(field='kNNscores', target='sac254_corrected', label='STRAY') + qc = qc.concatFlags(field='kNNscores', target='sac254_norm', label='STRAY') .. plot:: :context: close-figs diff --git a/docs/resources/data/hydro_config.csv b/docs/resources/data/hydro_config.csv index c97df2be1da86607ce0a1e0ddff58ab945d63180..d9858e02317f94f6956978cd35c38ab4c0145176 100644 --- a/docs/resources/data/hydro_config.csv +++ b/docs/resources/data/hydro_config.csv @@ -16,6 +16,6 @@ water_z ; transform(field=['water_temp_raw'], func=zScore(x), fr sac_z ; transform(field=['sac254_raw'], func=zScore(x), freq='20D') kNN_scores ; assignKNNScore(field=['level_z', 'water_z', 'sac_z'], freq='20D') kNN_scores ; flagByStray(freq='20D') -level_raw ; transferFlags(field=['kNN_scores'], label='STRAY') -sac254_corr ; transferFlags(field=['kNN_scores'], label='STRAY') -water_temp_raw ; transferFlags(field=['kNN_scores'], label='STRAY') \ No newline at end of file +level_raw ; concatFlags(field=['kNN_scores'], label='STRAY') +sac254_corr ; concatFlags(field=['kNN_scores'], label='STRAY') +water_temp_raw ; concatFlags(field=['kNN_scores'], label='STRAY')