Skip to content
Snippets Groups Projects

Inter limit fix

Merged Peter Lünenschloß requested to merge interLimitFix into develop
All threads resolved!
2 files
+ 132
49
Compare changes
  • Side-by-side
  • Inline
Files
2
+ 95
59
@@ -276,91 +276,129 @@ def meanQC(data, max_nan_total=np.inf, max_nan_consec=np.inf):
)
def interpolateNANs(
data, method, order=2, inter_limit=2, downgrade_interpolation=False
def _interpolWrapper(
x, order=1, method="time", limit_area="inside", limit_direction=None
):
"""
Function that automatically modifies the interpolation level or returns uninterpolated
input data if the data configuration breaks the interpolation method at the selected degree.
"""
min_vals_dict = {
"nearest": 2,
"slinear": 2,
"quadratic": 3,
"cubic": 4,
"spline": order + 1,
"polynomial": order + 1,
"piecewise_polynomial": 2,
"pchip": 2,
"akima": 2,
"cubicspline": 2,
}
min_vals = min_vals_dict.get(method, 0)
if (x.size < 3) | (x.count() < min_vals):
return x
else:
return x.interpolate(
method=method,
order=order,
limit_area=limit_area,
limit_direction=limit_direction,
)
def interpolateNANs(data, method, order=2, gap_limit=2, extrapolate=None):
"""
The function interpolates nan-values (and nan-grids) in timeseries data. It can
be passed all the method keywords from the pd.Series.interpolate method and will
than apply this very methods. Note, that the limit keyword really restricts
the interpolation to chunks, not containing more than "limit" nan entries (
the interpolation to gaps, not containing more than "limit" nan entries (
thereby not being identical to the "limit" keyword of pd.Series.interpolate).
:param data: pd.Series or np.array. The data series to be interpolated
:param method: String. Method keyword designating interpolation method to use.
:param order: Integer. If your desired interpolation method needs an order to be passed -
here you pass it.
:param inter_limit: Integer. Default = 2. Limit up to which consecutive nan - values in the data get
replaced by interpolation.
:param gap_limit: Integer or Offset String. Default = 2.
Number up to which consecutive nan - values in the data get
replaced by interpolated values.
Its default value suits an interpolation that only will apply to points of an
inserted frequency grid. (regularization by interpolation)
Gaps wider than "limit" will NOT be interpolated at all.
:param downgrade_interpolation: Boolean. Default False. If True:
Gaps of size "limit" or greater will NOT be interpolated at all.
:param extrapolate: Str or None. Default None. If True:
If a data chunk not contains enough values for interpolation of the order "order",
the highest order possible will be selected for that chunks interpolation.
:return:
"""
inter_limit = int(inter_limit or len(data) + 1)
data = pd.Series(data, copy=True)
gap_mask = data.isna().rolling(inter_limit, min_periods=0).sum() != inter_limit
if inter_limit == 2:
gap_mask = gap_mask & gap_mask.shift(-1, fill_value=True)
# helper variable for checking numerical value of gap limit, if its a numeric value (to avoid comparison to str)
gap_check = np.nan if isinstance(gap_limit, str) else gap_limit
data = pd.Series(data, copy=True)
limit_area = "inside" if not extrapolate else "outside"
if gap_check is None:
# if there is actually no limit set to the gaps to-be interpolated, generate a dummy mask for the gaps
gap_mask = pd.Series(True, index=data.index, name=data.name)
else:
gap_mask = (
gap_mask.replace(True, np.nan)
.fillna(method="bfill", limit=inter_limit)
.replace(np.nan, True)
.astype(bool)
)
if gap_check < 2:
# breaks execution down the line and is thus catched here since it basically means "do nothing"
return data
else:
# if there is a limit to the gaps to be interpolated, generate a mask that evaluates to False at the right
# side of each too-large gap with a rolling.sum combo
gap_mask = data.rolling(gap_limit, min_periods=0).count() > 0
# correction for initial gap
if isinstance(gap_limit, int):
gap_mask.iloc[:gap_limit] = True
if gap_limit == 2:
# for the common case of gap_limit=2 (default "harmonisation"), we efficiently back propagate the False
# value to fill the whole too-large gap by a shift and a conjunction.
gap_mask = gap_mask & gap_mask.shift(-1, fill_value=True)
else:
# If the gap_size is bigger we make a flip-rolling combo to backpropagate the False values
gap_mask = ~(
(~gap_mask[::-1]).rolling(gap_limit, min_periods=0).sum() > 0
)[::-1]
# memorizing the index for later reindexing
pre_index = data.index
if data[gap_mask].empty:
# drop the gaps that are too large with regard to the gap_limit from the data-to-be interpolated
data = data[gap_mask]
if data.empty:
return data
else:
data = data[gap_mask]
if method in ["linear", "time"]:
# in the case of linear interpolation, not much can go wrong/break so this conditional branch has efficient
# finish by just calling pandas interpolation routine to fill the gaps remaining in the data:
data.interpolate(
method=method, inplace=True, limit=inter_limit - 1, limit_area="inside"
method=method,
inplace=True,
limit_area=limit_area,
limit_direction=extrapolate,
)
else:
dat_name = data.name
gap_mask = (~gap_mask).cumsum()
data = pd.merge(gap_mask, data, how="inner", left_index=True, right_index=True)
def _interpolWrapper(x, wrap_order=order, wrap_method=method):
if wrap_order < 0:
return x
elif x.count() > wrap_order:
try:
return x.interpolate(method=wrap_method, order=int(wrap_order))
except (NotImplementedError, ValueError):
warnings.warn(
f"Interpolation with method {method} is not supported at order "
f"{wrap_order}. and will be performed at order {wrap_order - 1}"
)
return _interpolWrapper(x, int(wrap_order - 1), wrap_method)
elif x.size < 3:
return x
else:
if downgrade_interpolation:
return _interpolWrapper(x, int(x.count() - 1), wrap_method)
else:
return x
data = data.groupby(data.columns[0]).transform(_interpolWrapper)
# squeezing the 1-dimensional frame resulting from groupby for consistency
# reasons
data = data.squeeze(axis=1)
data.name = dat_name
# if the method that is interpolated with, depends on not only the left and right border points of any gap,
# but includes more points, it has to be applied on any data chunk seperated by the too-big gaps individually.
# So we use the gap_mask to group the data into chunks and perform the interpolation on every chunk seperatly
# with the .transform method of the grouper.
gap_mask = (~gap_mask).cumsum()[data.index]
chunk_groups = data.groupby(by=gap_mask)
data = chunk_groups.transform(
_interpolWrapper,
**{
"order": order,
"method": method,
"limit_area": limit_area,
"limit_direction": extrapolate,
},
)
# finally reinsert the dropped data gaps
data = data.reindex(pre_index)
return data
@@ -599,10 +637,8 @@ def linearDriftModel(x, origin, target):
def linearInterpolation(data, inter_limit=2):
return interpolateNANs(data, "time", inter_limit=inter_limit)
return interpolateNANs(data, "time", gap_limit=inter_limit)
def polynomialInterpolation(data, inter_limit=2, inter_order=2):
return interpolateNANs(
data, "polynomial", inter_limit=inter_limit, order=inter_order
)
return interpolateNANs(data, "polynomial", gap_limit=inter_limit, order=inter_order)
Loading