#! /usr/bin/env python # -*- coding: utf-8 -*- import io import re import numpy as np import pandas as pd import dios.dios as dios from saqc.core.core import readConfig from saqc.flagger import ( ContinuousFlagger, CategoricalFlagger, SimpleFlagger, DmpFlagger, ) TESTNODATA = (np.nan, -9999) TESTFLAGGER = ( CategoricalFlagger(["NIL", "GOOD", "BAD"]), SimpleFlagger(), # DmpFlagger(), # ContinuousFlagger(), ) def initData(cols=2, start_date="2017-01-01", end_date="2017-12-31", freq="1h"): dates = pd.date_range(start=start_date, end=end_date, freq=freq) data = {} dummy = np.arange(len(dates)) for col in range(1, cols + 1): data[f"var{col}"] = dummy * (col) return dios.DictOfSeries(data) def initMetaString(metastring, data): cleaned = re.sub( r"\s*,\s*", r",", re.sub(r"\|", r";", re.sub(r"\n[ \t]+", r"\n", metastring)) ) fobj = io.StringIO(cleaned.strip()) config = readConfig(fobj, data) fobj.seek(0) return fobj, config def _getKeys(metadict): keys = list(metadict[0].keys()) for row in metadict[1:]: for k in row.keys(): if k not in keys: keys.append(k) return keys def initMetaDict(config_dict, data): df = pd.DataFrame(config_dict)[_getKeys(config_dict)] fobj = io.StringIO() df.fillna("").to_csv(fobj, index=False, sep=";") fobj.seek(0) config = readConfig(fobj, data) fobj.seek(0) return fobj, config