#! /usr/bin/env python # -*- coding: utf-8 -*- # see test/functs/conftest.py for global fixtures "course_..." import pytest import numpy as np import pandas as pd import dios from saqc.funcs.outliers import ( flagMAD, flagOffset, flagRaise, flagMVScores, flagByGrubbs, ) from test.common import TESTFLAGGER @pytest.fixture(scope="module") def spiky_data(): index = pd.date_range(start="2011-01-01", end="2011-01-05", freq="5min") s = pd.Series(np.linspace(1, 2, index.size), index=index, name="spiky_data") s.iloc[100] = 100 s.iloc[1000] = -100 flag_assertion = [100, 1000] return dios.DictOfSeries(s), flag_assertion @pytest.mark.parametrize("flagger", TESTFLAGGER) def test_flagMad(spiky_data, flagger): data = spiky_data[0] field, *_ = data.columns flagger = flagger.initFlags(data) data, flagger_result = flagMAD(data, field, flagger, "1H") flag_result = flagger_result.getFlags(field) test_sum = (flag_result[spiky_data[1]] == flagger.BAD).sum() assert test_sum == len(spiky_data[1]) @pytest.mark.parametrize("flagger", TESTFLAGGER) def test_flagSpikesBasic(spiky_data, flagger): data = spiky_data[0] field, *_ = data.columns flagger = flagger.initFlags(data) data, flagger_result = flagOffset(data, field, flagger, thresh=60, tolerance=10, window="20min") flag_result = flagger_result.getFlags(field) test_sum = (flag_result[spiky_data[1]] == flagger.BAD).sum() assert test_sum == len(spiky_data[1]) # see test/functs/conftest.py for the 'course_N' @pytest.mark.parametrize("flagger", TESTFLAGGER) @pytest.mark.parametrize( "dat", [ pytest.lazy_fixture("course_1"), pytest.lazy_fixture("course_2"), pytest.lazy_fixture("course_3"), pytest.lazy_fixture("course_4"), ], ) def test_flagSpikesLimitRaise(dat, flagger): data, characteristics = dat() field, *_ = data.columns flagger = flagger.initFlags(data) _, flagger_result = flagRaise( data, field, flagger, thresh=2, intended_freq="10min", raise_window="20min", numba_boost=False ) assert flagger_result.isFlagged(field)[characteristics["raise"]].all() assert not flagger_result.isFlagged(field)[characteristics["return"]].any() assert not flagger_result.isFlagged(field)[characteristics["drop"]].any() # see test/functs/conftest.py for the 'course_N' @pytest.mark.parametrize("flagger", TESTFLAGGER) @pytest.mark.parametrize("dat", [pytest.lazy_fixture("course_3")]) def test_flagMultivarScores(dat, flagger): data1, characteristics = dat(periods=1000, initial_level=5, final_level=15, out_val=50) data2, characteristics = dat(periods=1000, initial_level=20, final_level=1, out_val=30) field = "dummy" fields = ["data1", "data2"] s1, s2 = data1.squeeze(), data2.squeeze() s1 = pd.Series(data=s1.values, index=s1.index) s2 = pd.Series(data=s2.values, index=s1.index) data = dios.DictOfSeries([s1, s2], columns=["data1", "data2"]) flagger = flagger.initFlags(data) _, flagger_result = flagMVScores( data, field, flagger, fields=fields, trafo=np.log, iter_start=0.95, n_neighbors=10 ) for field in fields: isflagged = flagger_result.isFlagged(field) assert isflagged[characteristics["raise"]].all() assert not isflagged[characteristics["return"]].any() assert not isflagged[characteristics["drop"]].any() @pytest.mark.parametrize("flagger", TESTFLAGGER) @pytest.mark.parametrize("dat", [pytest.lazy_fixture("course_3")]) def test_grubbs(dat, flagger): data, char_dict = dat( freq="10min", periods=45, initial_level=0, final_level=0, crowd_size=1, crowd_spacing=3, out_val=-10 ) flagger = flagger.initFlags(data) data, result_flagger = flagByGrubbs(data, "data", flagger, winsz=20, min_periods=15) assert result_flagger.isFlagged("data")[char_dict["drop"]].all()