#! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl from config import Fields, Params from funcs import flagDispatch from dsl import parseFlag from flagger import PositionalFlagger, BaseFlagger def inferFrequency(data): return pd.tseries.frequencies.to_offset(pd.infer_freq(data.index)) def flagWindow(flagger, flags, mask, direction='fw', window=0, **kwargs) -> pd.Series: fw = False bw = False f = flagger.isFlagged(flags) & mask if isinstance(window, int): x = f.rolling(window=window + 1).sum() if direction in ['fw', 'both']: fw = x.fillna(method='bfill').astype(bool) if direction in ['bw', 'both']: bw = x.shift(-window).fillna(method='bfill').astype(bool) else: # time-based windows if direction in ['bw', 'both']: raise NotImplementedError fw = f.rolling(window=window, closed='both').sum().astype(bool) fmask = bw | fw flags[fmask] = flagger.setFlag(flags[fmask], **kwargs) return flags def flagPeriod(flagger, flags, mask=True, flag_period=0, **kwargs) -> pd.Series: return flagWindow(flagger, flags, mask, 'fw', window=flag_period, **kwargs) def flagNext(flagger, flags, mask=True, flag_values=0, **kwargs) -> pd.Series: return flagWindow(flagger, flags, mask, 'fw', window=flag_values, **kwargs) def runner(meta, flagger, data, flags=None, nodata=np.nan): if flags is None: flags = pd.DataFrame(index=data.index) # the required meta data columns fields = [Fields.VARNAME, Fields.STARTDATE, Fields.ENDDATE, Fields.ASSIGN] # NOTE: # get to know every variable from meta # should go into a separate function for idx, configrow in meta.iterrows(): varname, _, _, assign = configrow[fields] if varname not in flags and \ (varname in data or varname not in data and assign is True): col_flags = flagger.initFlags(pd.DataFrame(index=data.index, columns=[varname])) flags = col_flags if flags.empty else flags.join(col_flags) # NOTE: # the outer loop runs over the flag tests, the inner one over the # variables. Switching the loop order would complicate the # reference to flags from other variables within the dataset flag_fields = meta.columns.to_series().filter(regex=Fields.FLAGS) for flag_pos, flag_field in enumerate(flag_fields): # NOTE: just an optimization if meta[flag_field].dropna().empty: continue for idx, configrow in meta.iterrows(): flag_test = configrow[flag_field] if pd.isnull(flag_test): continue varname, start_date, end_date, _ = configrow[fields] func_name, flag_params = parseFlag(flag_test) if varname not in data and varname not in flags: continue dchunk = data.loc[start_date:end_date].copy() if dchunk.empty: continue fchunk = flags.loc[start_date:end_date].copy() try: dchunk, fchunk = flagDispatch(func_name, dchunk, fchunk, varname, flagger, nodata=nodata, **flag_params) except NameError: raise NameError( f"function name {func_name} is not definied (variable '{varname}, 'line: {idx + 1})") old = flagger.getFlags(flags.loc[start_date:end_date, varname]) new = flagger.getFlags(fchunk[varname]) mask = old != new # flag a timespan after the condition is met if Params.FLAGPERIOD in flag_params: fchunk[varname] = flagPeriod(flagger, fchunk[varname], mask, **flag_params) # flag a certain amount of values after condition is met if Params.FLAGVALUES in flag_params: fchunk[varname] = flagNext(flagger, fchunk[varname], mask, **flag_params) if Params.FLAGPERIOD in flag_params or Params.FLAGVALUES in flag_params: # hack as assignment above don't preserve categorical type fchunk = fchunk.astype({ c: flagger.flags for c in fchunk.columns if flagger.flag_fields[0] in c}) if Params.PLOT in flag_params: new = flagger.getFlags(fchunk[varname]) mask = old != new plot(dchunk, fchunk, mask, varname, flagger, title=flag_test) data.loc[start_date:end_date] = dchunk flags[start_date:end_date] = fchunk.squeeze() flagger.nextTest() return data, flags def plot(data, flags, flagmask, varname, flagger, interactive_backend=True, title="Data Plot"): # the flagmask is True for flags to be shown False otherwise if not interactive_backend: # Import plot libs without interactivity, if not needed. This ensures that this can # produce an plot.png even if tkinter is not installed. E.g. if one want to run this # on machines without X-Server aka. graphic interface. mpl.use('Agg') else: mpl.use('TkAgg') from matplotlib import pyplot as plt # needed for datetime conversion from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() def plot_vline(plt, points, color='blue'): # workaround for ax.vlines() as this work unexpected for point in points: plt.axvline(point, color=color, linestyle=':') def _plot(varname, ax): x = data.index y = data[varname] flags_ = flags[varname] nrofflags = len(flagger.flags.categories) ax.plot(x, y, '-',markersize=1, color='silver') if nrofflags == 3: colors = {0:'silver', 1:'lime', 2:'red'} if nrofflags == 4: colors = {0:'silver', 1:'lime', 2:'yellow', 3:'red'} # plot (all) data in silver ax.plot(x, y, '-', color='silver', label='data') # plot (all) missing data in silver nans = y.isna() ylim = plt.ylim() flagged = flagger.isFlagged(flags_) idx = y.index[nans & ~flagged] # ax.vlines(idx, *ylim, linestyles=':', color='silver', label="missing") plot_vline(ax, idx, color='silver') # plot all flagged data in black ax.plot(x[flagged], y[flagged], '.', color='black', label="flagged by other test") # plot all flagged missing data (flagged before) in black idx = y.index[nans & flagged & ~flagmask] # ax.vlines(idx, *ylim, linestyles=':', color='black') plot_vline(ax, idx, color='black') ax.set_ylabel(varname) # plot currently flagged data in color of flag for i, f in enumerate(flagger.flags): if i == 0: continue flagged = flagger.isFlagged(flags_, flag=f) & flagmask label = f"flag: {f}" if i else 'data' ax.plot(x[flagged], y[flagged], '.', color=colors[i], label=label) idx = y.index[nans & flagged] # ax.vlines(idx, *ylim, linestyles=':', color=colors[i]) plot_vline(ax, idx, color=colors[i]) if not isinstance(varname, (list, set)): varname = set([varname]) plots = len(varname) if plots > 1: fig, axes = plt.subplots(plots, 1, sharex=True) axes[0].set_title(title) for i, v in enumerate(varname): _plot(v, axes[i]) else: fig, ax = plt.subplots() plt.title(title) _plot(varname.pop(), ax) plt.xlabel('time') # dummy plot for label `missing` see plot_vline for more info plt.plot([], [], ':', color='silver', label="missing data") plt.legend() plt.show() def prepareMeta(meta, data): # NOTE: an option needed to only pass tests within an file and deduce # everything else from data # no dates given, fall back to the available date range if Fields.STARTDATE not in meta: meta = meta.assign(**{Fields.STARTDATE: np.nan}) if Fields.ENDDATE not in meta: meta = meta.assign(**{Fields.ENDDATE: np.nan}) meta = meta.fillna( {Fields.ENDDATE: data.index.max(), Fields.STARTDATE: data.index.min()}) if Fields.ASSIGN not in meta: meta = meta.assign(**{Fields.ASSIGN: False}) # rows without a variables name don't help much meta = meta.dropna(subset=[Fields.VARNAME]) meta[Fields.STARTDATE] = pd.to_datetime(meta[Fields.STARTDATE]) meta[Fields.ENDDATE] = pd.to_datetime(meta[Fields.ENDDATE]) return meta def readData(fname, index_col, nans): data = pd.read_csv( fname, index_col=index_col, parse_dates=True, na_values=nans, low_memory=False) data.columns = [c.split(" ")[0] for c in data.columns] data = data.reindex( pd.date_range(data.index.min(), data.index.max(), freq="10min")) return data if __name__ == "__main__": datafname = "resources/data.csv" metafname = "resources/meta.csv" data = readData(datafname, index_col="Date Time", nans=["-9999", "-9999.0"]) meta = prepareMeta(pd.read_csv(metafname), data) flagger = PositionalFlagger() pdata, pflags = runner(meta, flagger, data)