#!/usr/bin/env python import dios import pytest import numpy as np import pandas as pd from saqc.constants import * from saqc.core.flags import Flags from tests.core.test_history import ( History, is_equal as hist_equal, ) _data = [ np.array([[]]), np.zeros((1, 1)), np.zeros((3, 4)), np.ones((3, 4)), np.ones((3, 4)) * np.nan, np.array( [ [0, 0, 0, 0], [0, 1, 2, 3], [0, 1, 2, 3], ] ), np.array( [ [0, 0, 0, 0], [0, 1, np.nan, 3], [0, 1, 2, 3], ] ), ] data = [] for d in _data: columns = list("abcdefgh")[: d.shape[1]] df = pd.DataFrame(d, dtype=float, columns=columns) dis = dios.DictOfSeries(df) di = {} di.update(df.items()) data.append(df) data.append(di) data.append(dis) @pytest.mark.parametrize("data", data) def test_init(data: np.array): flags = Flags(data) assert isinstance(flags, Flags) assert len(data.keys()) == len(flags) def is_equal(f1, f2): assert f1.columns.equals(f2.columns) for c in f1.columns: assert hist_equal(f1.history[c], f2.history[c]) @pytest.mark.parametrize("data", data) def test_copy(data: np.array): flags = Flags(data) shallow = flags.copy(deep=False) deep = flags.copy(deep=True) # checks for copy in [deep, shallow]: assert isinstance(copy, Flags) assert copy is not flags assert copy._data is not flags._data is_equal(copy, flags) assert deep is not shallow is_equal(deep, shallow) for c in shallow.columns: assert shallow._data[c] is flags._data[c] for c in deep.columns: assert deep._data[c] is not flags._data[c] @pytest.mark.parametrize("data", data) def test_flags_history(data: np.array): flags = Flags(data) # get for c in flags.columns: hist = flags.history[c] assert isinstance(hist, History) assert len(hist) > 0 # set for c in flags.columns: hist = flags.history[c] hlen = len(hist) hist.append(pd.Series(888.0, index=hist.index, dtype=float)) flags.history[c] = hist assert isinstance(hist, History) assert len(hist) == hlen + 1 @pytest.mark.parametrize("data", data) def test_get_flags(data: np.array): flags = Flags(data) for c in flags.columns: # check obvious var = flags[c] assert isinstance(var, pd.Series) assert not var.empty assert var.equals(flags._data[c].max()) # always a copy assert var is not flags[c] # in particular, a deep copy var[:] = 9999.0 assert all(flags[c] != var) @pytest.mark.parametrize("data", data) def test_set_flags(data: np.array): flags = Flags(data) for c in flags.columns: var = flags[c] hlen = len(flags.history[c]) new = pd.Series(9999.0, index=var.index, dtype=float) flags[c] = new assert len(flags.history[c]) == hlen + 1 assert all(flags.history[c].max() == 9999.0) assert all(flags.history[c].max() == flags[c]) # check if deep-copied correctly new[:] = 8888.0 assert all(flags.history[c].max() == 9999.0) # flags always overwrite former flags[c] = new assert len(flags.history[c]) == hlen + 2 assert all(flags.history[c].max() == 8888.0) assert all(flags.history[c].max() == flags[c]) # check if deep-copied correctly new[:] = 7777.0 assert all(flags.history[c].max() == 8888.0) @pytest.mark.parametrize("data", data) def test_set_flags_with_mask(data: np.array): flags = Flags(data) for c in flags.columns: var = flags[c] mask = var == UNFLAGGED scalar = 222.0 flags[mask, c] = scalar assert all(flags[c].loc[mask] == 222.0) assert all(flags[c].loc[~mask] != 222.0) # scalar without mask is not allowed, because # it holds to much potential to set the whole # column unintentionally. with pytest.raises(ValueError): flags[c] = 888.0 vector = var.copy() vector[:] = 333.0 flags[mask, c] = vector assert all(flags[c].loc[mask] == 333.0) assert all(flags[c].loc[~mask] != 333.0) # works with any that pandas eat, eg with numpy vector[:] = 444.0 vector = vector.to_numpy() flags[mask, c] = vector assert all(flags[c].loc[mask] == 444.0) assert all(flags[c].loc[~mask] != 444.0) # test length miss-match (mask) if len(mask) > 1: wrong_len = mask[:-1] with pytest.raises(ValueError): flags[wrong_len, c] = vector # test length miss-match (value) if len(vector) > 1: wrong_len = vector[:-1] with pytest.raises(ValueError): flags[mask, c] = wrong_len @pytest.mark.parametrize("data", data) def test_set_flags_with_index(data: np.array): flags = Flags(data) for c in flags.columns: var = flags[c] mask = var == UNFLAGGED index = mask[mask].index scalar = 222.0 flags[index, c] = scalar assert all(flags[c].loc[mask] == 222.0) assert all(flags[c].loc[~mask] != 222.0) vector = var.copy() vector[:] = 333.0 flags[index, c] = vector assert all(flags[c].loc[mask] == 333.0) assert all(flags[c].loc[~mask] != 333.0) # works with any that pandas eat, eg with numpy vector[:] = 444.0 vector = vector.to_numpy() flags[index, c] = vector assert all(flags[c].loc[mask] == 444.0) assert all(flags[c].loc[~mask] != 444.0) # test length miss-match (value) if len(vector) > 1: wrong_len = vector[:-1] with pytest.raises(ValueError): flags[index, c] = wrong_len def test_cache(): arr = np.array( [ [0, 0, 0, 0], [0, 1, 2, 3], [0, 1, 2, 3], ] ) data = pd.DataFrame(arr, dtype=float, columns=list("abcd")) flags = Flags(data) # cache empty assert flags._cache == {} # invoke caching flags["a"] assert "a" in flags._cache # clears cache flags["a"] = pd.Series([0, 0, 0], dtype=float) assert "a" not in flags._cache # cache all flags.toDios() for c in flags.columns: assert c in flags._cache # cache survive renaming flags.columns = list("xyzq") for c in flags.columns: assert c in flags._cache def _validate_flags_equals_frame(flags, df): assert df.columns.equals(flags.columns) for c in flags.columns: assert df[c].index.equals(flags[c].index) assert df[c].equals(flags[c]) # respects nan's @pytest.mark.parametrize("data", data) def test_to_dios(data: np.array): flags = Flags(data) df = flags.toDios() assert isinstance(df, dios.DictOfSeries) _validate_flags_equals_frame(flags, df) @pytest.mark.parametrize("data", data) def test_to_frame(data: np.array): flags = Flags(data) df = flags.toFrame() assert isinstance(df, pd.DataFrame) _validate_flags_equals_frame(flags, df)