#! /usr/bin/env python # -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd from test.common import TESTFLAGGER from saqc.funcs.harm_functions import ( harmonize, deharmonize, _interpolate, _interpolateGrid, _insertGrid, _outsortCrap, linear2Grid, interpolate2Grid, shift2Grid, aggregate2Grid, downsample ) RESHAPERS = ["nearest_shift", "fshift", "bshift"] COFLAGGING = [False, True] SETSHIFTCOMMENT = [False, True] INTERPOLATIONS = ["fshift", "bshift", "nearest_shift", "nearest_agg", "bagg"] INTERPOLATIONS2 = ["fagg", "time", "polynomial"] FREQS = ["15min", "30min"] @pytest.fixture def data(): index = pd.date_range( start="1.1.2011 00:00:00", end="1.1.2011 01:00:00", freq="15min" ) index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 29, 0)) index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 28, 0)) index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 32, 0)) index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 31, 0)) index = index.insert(0, pd.Timestamp(2010, 12, 31, 23, 57, 0)) index = index.drop(pd.Timestamp("2011-01-01 00:30:00")) dat = pd.Series(np.linspace(-50, 50, index.size), index=index, name="data") # good to have some nan dat[-3] = np.nan data = dat.to_frame() return data @pytest.fixture def multi_data(): index = pd.date_range( start="1.1.2011 00:00:00", end="1.1.2011 01:00:00", freq="15min" ) index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 29, 0)) index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 28, 0)) index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 32, 0)) index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 31, 0)) index = index.insert(0, pd.Timestamp(2010, 12, 31, 23, 57, 0)) index = index.drop(pd.Timestamp("2011-01-01 00:30:00")) dat = pd.Series(np.linspace(-50, 50, index.size), index=index, name="data") # good to have some nan dat[-3] = np.nan data = dat.to_frame() data.index = data.index.shift(1, "2min") dat2 = data.copy() dat2.index = dat2.index.shift(1, "17min") dat2.rename(columns={"data": "data2"}, inplace=True) dat3 = data.copy() dat3.index = dat3.index.shift(1, "1h") dat3.rename(columns={"data": "data3"}, inplace=True) dat3.drop(dat3.index[2:-2], inplace=True) # merge data = pd.merge(data, dat2, how="outer", left_index=True, right_index=True) data = pd.merge(data, dat3, how="outer", left_index=True, right_index=True) return data @pytest.mark.parametrize("flagger", TESTFLAGGER) @pytest.mark.parametrize("reshaper", RESHAPERS) @pytest.mark.parametrize("co_flagging", COFLAGGING) def test_harmSingleVarIntermediateFlagging(data, flagger, reshaper, co_flagging): flagger = flagger.initFlags(data) # flags = flagger.initFlags(data) # make pre harm copies: pre_data = data.copy() pre_flags = flagger.getFlags() freq = "15min" # harmonize data: data, flagger = harmonize(data, "data", flagger, freq, "time", reshaper) # flag something bad flagger = flagger.setFlags("data", loc=data.index[3:4]) data, flagger = deharmonize(data, "data", flagger, co_flagging=co_flagging) if reshaper is "nearest_shift": if co_flagging is True: assert flagger.isFlagged(loc=data.index[3:7]).squeeze().all() assert (~flagger.isFlagged(loc=data.index[0:3]).squeeze()).all() assert (~flagger.isFlagged(loc=data.index[7:]).squeeze()).all() if co_flagging is False: assert ( flagger.isFlagged().squeeze() == [False, False, False, False, True, False, True, False, False] ).all() if reshaper is "bshift": if co_flagging is True: assert flagger.isFlagged(loc=data.index[5:7]).squeeze().all() assert (~flagger.isFlagged(loc=data.index[0:5]).squeeze()).all() assert (~flagger.isFlagged(loc=data.index[7:]).squeeze()).all() if co_flagging is False: assert ( flagger.isFlagged().squeeze() == [False, False, False, False, False, True, True, False, False] ).all() if reshaper is "fshift": if co_flagging is True: assert flagger.isFlagged(loc=data.index[3:5]).squeeze().all() assert flagger.isFlagged(loc=data.index[6:7]).squeeze().all() assert (~flagger.isFlagged(loc=data.index[0:3]).squeeze()).all() assert (~flagger.isFlagged(loc=data.index[7:]).squeeze()).all() if co_flagging is False: assert ( flagger.isFlagged().squeeze() == [False, False, False, False, True, False, True, False, False] ).all() flags = flagger.getFlags() assert pre_data.equals(data) assert len(data) == len(flags) assert (pre_flags.index == flags.index).all() @pytest.mark.parametrize("flagger", TESTFLAGGER) @pytest.mark.parametrize("interpolation", INTERPOLATIONS) @pytest.mark.parametrize("freq", FREQS) def test_harmSingleVarInterpolations(data, flagger, interpolation, freq): flagger = flagger.initFlags(data) flags = flagger.getFlags() # make pre harm copies: pre_data = data.copy() pre_flags = flags.copy() harm_start = data.index[0].floor(freq=freq) harm_end = data.index[-1].ceil(freq=freq) test_index = pd.date_range(start=harm_start, end=harm_end, freq=freq) data, flagger = harmonize( data, "data", flagger, freq, interpolation, "fshift", reshape_shift_comment=False, inter_agg="sum", ) if interpolation is "fshift": if freq == "15min": assert data.equals( pd.DataFrame( {"data": [np.nan, -37.5, -25.0, 0.0, 37.5, 50.0]}, index=test_index ) ) if freq == "30min": assert data.equals( pd.DataFrame({"data": [np.nan, -37.5, 0.0, 50.0]}, index=test_index) ) if interpolation is "bshift": if freq == "15min": assert data.equals( pd.DataFrame( {"data": [-50.0, -37.5, -25.0, 12.5, 37.5, 50.0]}, index=test_index ) ) if freq == "30min": assert data.equals( pd.DataFrame({"data": [-50.0, -37.5, 12.5, 50.0]}, index=test_index) ) if interpolation is "nearest_shift": if freq == "15min": assert data.equals( pd.DataFrame( {"data": [np.nan, -37.5, -25.0, 12.5, 37.5, 50.0]}, index=test_index ) ) if freq == "30min": assert data.equals( pd.DataFrame({"data": [np.nan, -37.5, 12.5, 50.0]}, index=test_index) ) if interpolation is "nearest_agg": if freq == "15min": assert data.equals( pd.DataFrame( {"data": [np.nan, -87.5, -25.0, 0.0, 37.5, 50.0]}, index=test_index ) ) if freq == "30min": assert data.equals( pd.DataFrame({"data": [np.nan, -87.5, -25.0, 87.5]}, index=test_index) ) if interpolation is "bagg": if freq == "15min": assert data.equals( pd.DataFrame( {"data": [-50.0, -37.5, -37.5, 12.5, 37.5, 50.0]}, index=test_index ) ) if freq == "30min": assert data.equals( pd.DataFrame({"data": [-50.0, -75.0, 50.0, 50.0]}, index=test_index) ) data, flagger = deharmonize(data, "data", flagger, co_flagging=True) data, flagger = deharmonize(data, "data", flagger, co_flagging=True) flags = flagger.getFlags() assert pre_data.equals(data) assert len(data) == len(flags) assert (pre_flags.index == flags.index).all() @pytest.mark.parametrize("flagger", TESTFLAGGER) @pytest.mark.parametrize("shift_comment", SETSHIFTCOMMENT) def test_multivariatHarmonization(multi_data, flagger, shift_comment): flagger = flagger.initFlags(multi_data) flags = flagger.getFlags() # for comparison pre_data = multi_data.copy() pre_flags = flags.copy() freq = "15min" harm_start = multi_data.index[0].floor(freq=freq) harm_end = multi_data.index[-1].ceil(freq=freq) test_index = pd.date_range(start=harm_start, end=harm_end, freq=freq) # harm: multi_data, flagger = harmonize( multi_data, "data", flagger, freq, "time", "nearest_shift", reshape_shift_comment=shift_comment, ) multi_data, flagger = harmonize( multi_data, "data2", flagger, freq, "bagg", "bshift", inter_agg="sum", reshape_agg="max", reshape_shift_comment=shift_comment, ) multi_data, flagger = harmonize( multi_data, "data3", flagger, freq, "fshift", "fshift", reshape_shift_comment=shift_comment, ) assert multi_data.index.equals(test_index) assert pd.Timedelta(pd.infer_freq(multi_data.index)) == pd.Timedelta(freq) multi_data, flagger = deharmonize(multi_data, "data3", flagger, co_flagging=False) multi_data, flagger = deharmonize(multi_data, "data2", flagger, co_flagging=True) multi_data, flagger = deharmonize(multi_data, "data", flagger, co_flagging=True) flags = flagger.getFlags() assert pre_data.equals(multi_data[pre_data.columns.to_list()]) assert len(multi_data) == len(flags) assert (pre_flags.index == flags.index).all() @pytest.mark.parametrize("method", INTERPOLATIONS2) def test_gridInterpolation(data, method): freq = "15min" data = (data * np.sin(data)).append(data.shift(1, "2h")).shift(1, "3s") data = data.squeeze() # we are just testing if the interpolation gets passed to the series without causing an error: _interpolateGrid( data, freq, method, order=1, agg_method="sum", downcast_interpolation=True ) if method == "polynomial": _interpolateGrid( data, freq, method, order=2, agg_method="sum", downcast_interpolation=True ) _interpolateGrid( data, freq, method, order=10, agg_method="sum", downcast_interpolation=True ) data = _insertGrid(data, freq) _interpolate(data, method, inter_limit=3) @pytest.mark.parametrize("flagger", TESTFLAGGER) def test_outsortCrap(data, flagger): field = data.columns[0] flagger = flagger.initFlags(data) flagger = flagger.setFlags(field, iloc=slice(5, 7)) drop_index = data.index[5:7] d, _ = _outsortCrap(data, field, flagger, drop_flags=flagger.BAD) assert drop_index.difference(d.index).equals(drop_index) flagger = flagger.setFlags(field, iloc=slice(0, 1), flag=flagger.GOOD) drop_index = drop_index.insert(-1, data.index[0]) d, _ = _outsortCrap(data, field, flagger, drop_flags=[flagger.BAD, flagger.GOOD],) assert drop_index.sort_values().difference(d.index).equals(drop_index.sort_values()) f_drop, _ = _outsortCrap( data, field, flagger, drop_flags=[flagger.BAD, flagger.GOOD], return_drops=True, ) assert f_drop.index.sort_values().equals(drop_index.sort_values()) @pytest.mark.parametrize("flagger", TESTFLAGGER) def test_wrapper(data, flagger): # we are only testing, whether the wrappers do pass processing: field = data.columns[0] freq = '15min' flagger = flagger.initFlags(data) downsample(data, field, flagger, '15min', '30min', agg_func="sum", sample_func="mean") linear2Grid(data, field, flagger, freq, flag_assignment_method='nearest_agg', flag_agg_func="max", drop_flags=None) aggregate2Grid(data, field, flagger, freq, agg_func="sum", agg_method='nearest_agg', flag_agg_func="max", drop_flags=None) shift2Grid(data, field, flagger, freq, shift_method='nearest_shift', drop_flags=None)