# Miscellaneous A collection of unrelated quality check functions. ## Index - [range](#range) - [seasonalRange](#seasonalrange) - [isolated](#isolated) - [missing](#missing) - [clear](#clear) - [force](#force) ## range ``` range(min, max) ``` | parameter | data type | default value | description | | --------- | --------- | ------------- | ----------- | | min | float | | upper bound for valid values | | max | float | | lower bound for valid values | The function flags all values outside the closed interval $`[`$`min`, `max`$`]`$. ## seasonalRange ``` sesonalRange(min, max, startmonth=1, endmonth=12, startday=1, endday=31) ``` | parameter | data type | default value | description | | --------- | ----------- | ---- | ----------- | | min | float | | upper bound for valid values | | max | float | | lower bound for valid values | | startmonth | integer | `1` | interval start month | | endmonth | integer | `12` | interval end month | | startday | integer | `1` | interval start day | | endday | integer | `31` | interval end day | The function does the same as `range` but only, if the timestamp of the data-point lies in a time interval defined by day and month only. The year is **not** used by the interval calculation. The left interval boundary is defined by `startmonth` and `startday`, the right by `endmonth` and `endday`. Both boundaries are inclusive. If the left side occurs later in the year than the right side, the interval is extended over the change of year (e.g. an interval of [01/12, 01/03], will flag values in December, January and February). NOTE: Only works for time-series-like datasets. ## isolated ``` isolated(window, group_size=1, continuation_range='1min') ``` | parameter | data type | default value | description | |--------------|---------------------------------------------------------------|---------------|------------------------------------------------------------------------| | group_window | [offset string](docs/ParameterDescriptions.md#offset-strings) | | Maximum size of an isolated group, see condition (1). | | gap_window | [offset string](docs/ParameterDescriptions.md#offset-strings) | | Minimum size of the gap separating isolated, see condition (2) and (3) | The function flags arbitrary large groups of values, if they are surrounded by sufficiently large data gaps. A gap is defined as group of missing and/or flagged values. A continuous group of values $`x_{k}, x_{k+1},...,x_{k+n}`$ with timestamps $`t_{k}, t_{k+1}, ..., t_{k+n}`$ is considered to be isolated, if: 1. $` t_{k+n} - t_{k} \le `$ `group_window` 2. None of the values $` x_i, ..., x_{k-1} `$, with $`t_{k-1} - t_{i} \ge `$ `gap_window` is valid and unflagged 3. None of the values $` x_{k+n+1}, ..., x_{j} `$, with $`t_{j} - t_{k+n+1} \ge `$ `gap_window` is valid and unflagged ## missing ``` missing(nodata=NaN) ``` | parameter | data type | default value | description | | --------- | ---------- | -------------- | ----------- | | nodata | any | `NAN` | Value associated with missing data | The function flags all values indicating missing data. ## clear ``` clear() ``` The funcion removes all previously set flags. ## force ``` force(flag) ``` | parameter | data type | default value | description | | --------- | ----------- | ---- | ----------- | | flag | float/[flagging constant](docs/ParameterDescriptions.md#flagging-constants) | GOOD | flag to force | The functions sets the given flag, ignoring previous flag values.