#! /usr/bin/env python # -*- coding: utf-8 -*- # see test/functs/fixtures.py for global fixtures "course_..." import dios from saqc.flagger import initFlagsLike from saqc.funcs.tools import mask from saqc.funcs.residues import calculatePolynomialResidues, calculateRollingResidues from tests.fixtures import * @pytest.mark.parametrize("dat", [pytest.lazy_fixture("course_2")]) def test_modelling_polyFit_forRegular(dat): data, _ = dat(freq="10min", periods=30, initial_level=0, final_level=100, out_val=-100) # add some nice sine distortion data = data + 10 * np.sin(np.arange(0, len(data.indexes[0]))) data = dios.DictOfSeries(data) flagger = initFlagsLike(data) result1, _ = calculatePolynomialResidues(data, "data", flagger, 11, 2, numba=False) result2, _ = calculatePolynomialResidues(data, "data", flagger, 11, 2, numba=True) assert (result1["data"] - result2["data"]).abs().max() < 10 ** -10 result3, _ = calculatePolynomialResidues(data, "data", flagger, "110min", 2, numba=False) assert result3["data"].equals(result1["data"]) result4, _ = calculatePolynomialResidues(data, "data", flagger, 11, 2, numba=True, min_periods=11) assert (result4["data"] - result2["data"]).abs().max() < 10 ** -10 data.iloc[13:16] = np.nan result5, _ = calculatePolynomialResidues(data, "data", flagger, 11, 2, numba=True, min_periods=9) assert result5["data"].iloc[10:19].isna().all() @pytest.mark.parametrize("dat", [pytest.lazy_fixture("course_2")]) def test_modelling_rollingMean_forRegular(dat): data, _ = dat(freq="10min", periods=30, initial_level=0, final_level=100, out_val=-100) data = dios.DictOfSeries(data) flagger = initFlagsLike(data) calculateRollingResidues(data, "data", flagger, 5, func=np.mean, eval_flags=True, min_periods=0, center=True) calculateRollingResidues(data, "data", flagger, 5, func=np.mean, eval_flags=True, min_periods=0, center=False) @pytest.mark.parametrize("dat", [pytest.lazy_fixture("course_1")]) def test_modelling_mask(dat): data, _ = dat() data = dios.DictOfSeries(data) flagger = initFlagsLike(data) data_seasonal, flagger_seasonal = mask(data, "data", flagger, mode='periodic', period_start="20:00", period_end="40:00", include_bounds=False) flaggs = flagger_seasonal["data"] assert flaggs[np.logical_and(20 <= flaggs.index.minute, 40 >= flaggs.index.minute)].isna().all() data_seasonal, flagger_seasonal = mask(data, "data", flagger, mode='periodic', period_start="15:00:00", period_end="02:00:00") flaggs = flagger_seasonal["data"] assert flaggs[np.logical_and(15 <= flaggs.index.hour, 2 >= flaggs.index.hour)].isna().all() data_seasonal, flagger_seasonal = mask(data, "data", flagger, mode='periodic', period_start="03T00:00:00", period_end="10T00:00:00") flaggs = flagger_seasonal["data"] assert flaggs[np.logical_and(3 <= flaggs.index.hour, 10 >= flaggs.index.hour)].isna().all() mask_ser = pd.Series(False, index=data["data"].index) mask_ser[::5] = True data["mask_ser"] = mask_ser flagger = initFlagsLike(data) data_masked, flagger_masked = mask(data, "data", flagger, mode='mask_var', mask_var="mask_ser") flaggs = flagger_masked["data"] assert flaggs[data_masked['mask_ser']].isna().all()