#! /usr/bin/env python # -*- coding: utf-8 -*- # see test/functs/fixtures.py for global fixtures "course_..." import dios from saqc.constants import * from saqc.core import initFlagsLike from saqc.funcs.transformation import transform from saqc.funcs.drift import correctOffset from saqc.funcs.interpolation import ( interpolateByRolling, interpolateInvalid, interpolateIndex, ) from saqc.funcs.resampling import resample from saqc.lib.ts_operators import linearInterpolation, polynomialInterpolation from tests.fixtures import * def test_rollingInterpolateMissing(course_5): data, characteristics = course_5(periods=10, nan_slice=[5, 6]) field = data.columns[0] data = dios.DictOfSeries(data) flags = initFlagsLike(data) dataInt, *_ = interpolateByRolling( data, field, flags, 3, func=np.median, center=True, min_periods=0, interpol_flag=UNFLAGGED, ) # import pdb # pdb.set_trace() assert dataInt[field][characteristics["missing"]].notna().all() dataInt, *_ = interpolateByRolling( data, field, flags, 3, func=np.nanmean, center=False, min_periods=3, interpol_flag=UNFLAGGED, ) assert dataInt[field][characteristics["missing"]].isna().all() def test_interpolateMissing(course_5): data, characteristics = course_5(periods=10, nan_slice=[5]) field = data.columns[0] data = dios.DictOfSeries(data) flags = initFlagsLike(data) dataLin, *_ = interpolateInvalid(data, field, flags, method="linear") dataPoly, *_ = interpolateInvalid(data, field, flags, method="polynomial") assert dataLin[field][characteristics["missing"]].notna().all() assert dataPoly[field][characteristics["missing"]].notna().all() data, characteristics = course_5(periods=10, nan_slice=[5, 6, 7]) dataLin1, *_ = interpolateInvalid(data, field, flags, method="linear", limit=2) dataLin2, *_ = interpolateInvalid(data, field, flags, method="linear", limit=3) dataLin3, *_ = interpolateInvalid(data, field, flags, method="linear", limit=4) assert dataLin1[field][characteristics["missing"]].isna().all() assert dataLin2[field][characteristics["missing"]].isna().all() assert dataLin3[field][characteristics["missing"]].notna().all() def test_transform(course_5): data, characteristics = course_5(periods=10, nan_slice=[5, 6]) field = data.columns[0] data = dios.DictOfSeries(data) flags = initFlagsLike(data) data1, *_ = transform(data, field, flags, func=linearInterpolation) assert data1[field][characteristics["missing"]].isna().all() data1, *_ = transform( data, field, flags, func=lambda x: linearInterpolation(x, inter_limit=3) ) assert data1[field][characteristics["missing"]].notna().all() data1, *_ = transform( data, field, flags, func=lambda x: polynomialInterpolation(x, inter_limit=3, inter_order=3), ) assert data1[field][characteristics["missing"]].notna().all() def test_resample(course_5): data, characteristics = course_5( freq="1min", periods=30, nan_slice=[1, 11, 12, 22, 24, 26] ) field = data.columns[0] data = dios.DictOfSeries(data) flags = initFlagsLike(data) data1, *_ = resample( data, field, flags, "10min", np.mean, maxna=2, maxna_group=1, ) assert ~np.isnan(data1[field].iloc[0]) assert np.isnan(data1[field].iloc[1]) assert np.isnan(data1[field].iloc[2]) def test_interpolateGrid(course_5, course_3): data, _ = course_5() data_grid, characteristics = course_3() data["grid"] = data_grid.to_df() # data = dios.DictOfSeries(data) flags = initFlagsLike(data) dataInt, *_ = interpolateIndex( data, "data", flags, "1h", "time", grid_field="grid", limit=10 ) def test_offsetCorrecture(): data = pd.Series(0, index=pd.date_range("2000", freq="1d", periods=100), name="dat") data.iloc[30:40] = -100 data.iloc[70:80] = 100 data = dios.DictOfSeries(data) flags = initFlagsLike(data) data, _ = correctOffset(data, "dat", flags, 40, 20, "3d", 1) assert (data == 0).all()[0]