diff --git a/dios/dios.py b/dios/dios.py
index fa72814e5d84e00c0cecd7621bc8a0c5d366ce5d..48af474a7f1dceb6b7169a45cf8d5d6c799c30db 100644
--- a/dios/dios.py
+++ b/dios/dios.py
@@ -200,7 +200,9 @@ class DictOfSeries:
 
         new = self.copy_empty()
         for k in self.columns:
-            new._data.at[k] = self._data.at[k].loc[key]
+            # we cannot use loc here, because s.loc[:4]
+            # is inclusive, whereas s[:4] isn't :(
+            new._data.at[k] = self._data.at[k][key]
 
         return new
 
@@ -213,7 +215,7 @@ class DictOfSeries:
 
         new = self.copy_empty()
         for k in keys:
-            ser = self._data.at[key]
+            ser = self._data.at[k]
             boolser = key[k]
             # align rows
             idx = boolser[boolser].index.intersection(ser.index)
@@ -223,7 +225,7 @@ class DictOfSeries:
     def _getitem_bool_listlike(self, key):
         new = self.copy_empty()
         for k in self.columns:
-            ser = self._data.at[key]
+            ser = self._data.at[k]
             new._data.at[k] = ser.loc[key]
         return new
 
@@ -361,6 +363,10 @@ class DictOfSeries:
     def to_df(self):
         return self._data.apply(lambda s: s).transpose()
 
+    @property
+    def debugDf(self):
+        return self.to_df()
+
     def memory_usage(self, index=True, deep=False):
         mem = 0
         for k in self.columns:
@@ -473,8 +479,13 @@ class DictOfSeries:
 def pprint(dios, max_rows=10, max_cols=2, delim='  '):
     sstr = []
     cols = list(dios.columns)
+
+    if dios.empty:
+        return "Empty DictionaryOfSeries"
+
     for c in dios.columns:
         sstr.append(dios[c].to_string(max_rows=max_rows).split('\n'))
+
     maxlen = max([len(x) for x in sstr])
 
     # reduce number of visible vars
diff --git a/dios/locator.py b/dios/locator.py
index ca1f78cb2cc102ba32b0b1eba0bca6c2893593fd..e43cd94725166a2ad4575d4ffdbdc61bfe80c244 100644
--- a/dios/locator.py
+++ b/dios/locator.py
@@ -29,34 +29,36 @@ class _LocIndexer(_Indexer):
         if is_dios_like(rowkey) or is_dios_like(colkey):
             raise ValueError("Cannot index with multidimensional key")
 
-        data = self._dios[colkey]
+        data = self._data.loc[colkey]
 
-        # .loc[:, any] - simple low-cost optimization
-        if isinstance(rowkey, slice) and rowkey == slice(None):
-            new = data.copy()
-
-        # .loc[any, scalar]
-        elif isinstance(data, pd.Series):
-            new = data.loc[rowkey]
+        # in any case data is a series now,
+        # either a column-indexed series of series,
+        # or a simple single row-indexed series (of values)
+        if isinstance(data, pd.Series):
 
-        # .loc[any, non-scalar]
-        elif isinstance(data, self._dios.__class__):
+            # .loc[any, scalar]   - got a single row indexed series
+            if is_hashable(colkey):
+                new = data.loc[rowkey]
 
-            # .loc[scalar, non-scalar]
-            if is_hashable(rowkey):
+            # .loc[scalar, any]
+            elif is_hashable(rowkey):
                 # we do not override data directly to may get
                 # a better fitting series dtype
-                new = pd.Series(index=type(data.columns)([]))
+                new = pd.Series(index=type(data.index)([]))
                 for k in data.index:
-                    s = data._data.at[k]
+                    s = data.at[k]
                     new.at[k] = s.loc[rowkey]
 
+            # .iloc[:, any] - simple low-cost optimization
+            elif isinstance(rowkey, slice) and rowkey == slice(None):
+                new = self._dios.copy_empty()
+                new._data = data.copy()
+
             # .loc[non-scalar, non-scalar]
             else:
                 new = self._dios.copy_empty()
-                for k in data.columns:
-                    s = data._data.at[k]
-                    new._data.at[k] = s.loc[rowkey]
+                for k in data.index:
+                    new._data.at[k] = data.at[k].loc[rowkey]
         else:
             raise AssertionError(f"getitem returned data of type {type(data)}")
 
@@ -140,10 +142,7 @@ class _iLocIndexer(_Indexer):
         if is_dios_like(rowkey) or is_dios_like(colkey):
             raise ValueError("Cannot index with multidimensional key")
 
-        if is_bool_indexer(colkey):
-            data = self._dios[colkey]._data
-        else:
-            data = self._data.iloc[colkey]
+        data = self._data.iloc[colkey]
 
         # in any case data is a series now,
         # either a column-indexed series of series,
@@ -155,7 +154,7 @@ class _iLocIndexer(_Indexer):
                 new = data.iloc[rowkey]
 
             # .loc[int, any]
-            if is_integer(colkey):
+            elif is_integer(rowkey):
                 # we do not override data directly to may get
                 # a better fitting series dtype
                 new = pd.Series(index=type(data.index)([]))
diff --git a/dios/options.py b/dios/options.py
index abd991cd6fedd68a3aaa7ded7754aa6df6c4acf2..89d24308c4947ac759a192891fd0897c28213fe4 100644
--- a/dios/options.py
+++ b/dios/options.py
@@ -1,3 +1,5 @@
+import pandas as pd
+import numpy as np
 # do not import dios-stuff here
 
 
@@ -78,6 +80,19 @@ dios_options = {
 }
 
 
+def align_dioslikes(self, other, nan=np.nan, policy=None):
+    new = self.copy_empty()
+    for k in self.columns:
+        left = self.at[k]
+        if k not in other:
+            new[k] = pd.Series(data=nan, index=left.index)
+            continue
+        right = other.at[k].reindex_like(left)
+        r = right
+        r = right.reindex_like(left)
+        l,r = l.align(r)
+
+
 def align_index_by_policy(left, right, policy=None):
     if policy is None:
         policy = dios_options[OptsFields.setitem_nan_policy]
diff --git a/test/test__getitem__.py b/test/test__getitem__.py
index 5eab0d82c673089cd7129262c74418f88feaea13..9b0ee84b6798ddb52ab098dc372da560c559a827 100644
--- a/test/test__getitem__.py
+++ b/test/test__getitem__.py
@@ -1,12 +1,14 @@
 from dios import *
-import pytest
+from test.test_setup import *
 
-s1 = pd.Series(range(10), index=range(10))
-s2 = pd.Series(range(5, 10), index=range(5, 10))
-s3 = pd.Series(range(1, 30, 2), index=range(1, 30, 2))
-s4 = pd.Series(np.linspace(7, 13, 9), index=range(3, 12))
-s1.name, s2.name, s3.name, s4.name = 'a', 'b', 'c', 'd'
-d1 = DictOfSeries(data=dict(a=s1.copy(), b=s2.copy(), c=s3.copy(), d=s4.copy()))
+# s1 = pd.Series(range(10), index=range(10))
+# s2 = pd.Series(range(5, 10), index=range(5, 10))
+# s3 = pd.Series(range(1, 30, 2), index=range(1, 30, 2))
+# s4 = pd.Series(np.linspace(7, 13, 9), index=range(3, 12))
+# s1.name, s2.name, s3.name, s4.name = 'a', 'b', 'c', 'd'
+# d1 = DictOfSeries(data=dict(a=s1.copy(), b=s2.copy(), c=s3.copy(), d=s4.copy()))
+#
+d1 = dios__()
 
 
 @pytest.mark.parametrize(('idxer', 'exp'), [('a', s1), ('c', s3)])
@@ -60,26 +62,12 @@ def test__getitem_single_iloc_fail(idxer):
         a = d1.iloc[:, idxer]
 
 
-BLIST = [True, False, False, True]
-
-LISTIDXER = [['a'], ['a', 'c'], pd.Series(['a', 'c'])]
-BOOLIDXER = [pd.Series(BLIST), d1.copy() > 10]
-SLICEIDXER = [slice(None), slice(-3, -1), slice(-1, 3), slice(None, None, 3)]
-MULTIIDXER = []  # [d1 > 9, d1 != d1, d1 == d1]
-EMPTYIDEXER = [[], pd.Series(), slice(3, 3), slice(3, -1), DictOfSeries()]
-
-INDEXERS = LISTIDXER + BOOLIDXER + SLICEIDXER + MULTIIDXER + EMPTYIDEXER
-
-
 @pytest.mark.parametrize('idxer', INDEXERS)
 def test__getitem__(idxer):
     d = d1[idxer]
     assert isinstance(d, DictOfSeries)
 
 
-FAIL_INDEXERS = [['z'], ['a', 'z'], pd.Series(['a', 'z']), BLIST, DictOfSeries(dict(a=[1, 2, 3]))]
-
-
 @pytest.mark.parametrize('idxer', FAIL_INDEXERS)
 def test__getitem__fail(idxer):
     with pytest.raises((ValueError, KeyError)):
diff --git a/test/test__setitem__.py b/test/test__setitem__.py
index a88dec72873dd87cf761fb5382d8a356437c50ac..6f9d4f531fc25740fad183f945cb7d964988d5d4 100644
--- a/test/test__setitem__.py
+++ b/test/test__setitem__.py
@@ -1,4 +1,5 @@
 from dios import *
+from test.test_setup import *
 import pytest
 
 s1 = pd.Series(range(10), index=range(10))
diff --git a/test/test_dflike__setget__.py b/test/test_dflike__setget__.py
new file mode 100644
index 0000000000000000000000000000000000000000..87695ad359554e03432cd46ba8e4e84e61b69773
--- /dev/null
+++ b/test/test_dflike__setget__.py
@@ -0,0 +1,80 @@
+from dios import *
+from test.test_setup import *
+import pytest
+
+
+def _test(val, exp):
+    if isinstance(exp, pd.DataFrame):
+        assert isinstance(val, DictOfSeries)
+
+        if val.empty:
+            for c in exp:
+                assert exp[c].dropna().empty
+            return
+
+        assert (val.columns == exp.columns).all()
+        for c in exp:
+            l = val[c]
+            r = exp[c].dropna()
+            assert isinstance(l, pd.Series)
+            assert isinstance(r, pd.Series)
+            assert (l == r).all()
+    else:
+        assert type(exp) == type(val)
+
+        if isinstance(exp, pd.Series):
+            assert (val == exp.dropna()).all()
+        else:
+            assert val == exp
+
+
+@pytest.mark.parametrize('idxer', INDEXERS)
+def test_dflike__getitem__(df_, dios_, idxer):
+    print(idxer)
+    exp = df_[idxer]
+    val = dios_[idxer]
+    _test(val, exp)
+
+
+@pytest.mark.parametrize('locL', LOC_L)
+@pytest.mark.parametrize('locR', LOC_R)
+def test_dflike__get_loc__(df_, dios_, locL, locR):
+    print(locL)
+    print(locR)
+    exp = df_.loc[locL, locR]
+    val = dios_.loc[locL, locR]
+    _test(val, exp)
+
+
+@pytest.mark.parametrize('ilocL', ILOC_L)
+@pytest.mark.parametrize('ilocR', ILOC_R)
+def test_dflike__get_iloc__(df_, dios_, ilocL, ilocR):
+    print(ilocL)
+    print(ilocR)
+    exp = df_.iloc[ilocL, ilocR]
+    val = dios_.iloc[ilocL, ilocR]
+    # _test(val, exp)
+
+    if isinstance(exp, pd.DataFrame):
+        assert isinstance(val, DictOfSeries)
+
+        if val.empty:
+            for c in exp:
+                assert exp[c].dropna().empty
+            return
+
+        assert (val.columns == exp.columns).all()
+        for c in exp:
+            l = val[c]
+            r = exp[c].dropna()
+            assert isinstance(l, pd.Series)
+            assert isinstance(r, pd.Series)
+            assert (l == r).all()
+    else:
+        assert type(exp) == type(val)
+
+        if isinstance(exp, pd.Series):
+            assert (val == exp.dropna()).all()
+        else:
+            assert val == exp
+
diff --git a/test/test_setup.py b/test/test_setup.py
index d293a1ecab2e80a570e83d4f789358fd7b838318..295a43ae4c73f293798a26d8c01d90d112d34a44 100644
--- a/test/test_setup.py
+++ b/test/test_setup.py
@@ -6,6 +6,52 @@ import numpy as np
 from copy import deepcopy
 from pandas.tests.series.conftest import datetime_series
 
+a = pd.Series(range(0, 70, 7))
+b = pd.Series(range(5, 15, 1))
+c = pd.Series(range(7, 107, 10))
+d = pd.Series(range(0, 10, 1))
+
+s1, s2, s3, s4 = a, b, c, d
+
+
+def df__():
+    return pd.DataFrame(dict(a=a.copy(), b=b.copy(), c=c.copy(), d=d.copy(), ))
+
+
+def dios__():
+    return DictOfSeries(dict(a=a.copy(), b=b.copy(), c=c.copy(), d=d.copy(), ))
+
+
+@pytest.fixture
+def df_():
+    return df__().copy()
+
+
+@pytest.fixture
+def dios_():
+    return dios__().copy()
+
+
+BLIST = [True, False, False, False, True] * 2
+
+LISTIDXER = [['a'], ['a', 'c'], pd.Series(['a', 'c'])]
+BOOLIDXER = [BLIST, pd.Series(BLIST), df__() > 10]
+SLICEIDXER = [slice(None), slice(4), slice(-3, -1), slice(-1, 3), slice(None, None, 3)]
+MULTIIDXER = [df__() > 9, df__() != df__(), df__() == df__()]
+EMPTYIDEXER = [[], pd.Series(), slice(3, 3), slice(3, -1), pd.DataFrame(), []]
+
+INDEXERS = LISTIDXER + BOOLIDXER + SLICEIDXER + MULTIIDXER + EMPTYIDEXER
+
+LOC_L = [slice(None), slice(2, 8), pd.Series(BLIST), BLIST, [6,5], 2]
+LOC_R = [slice(None), slice('a', 'c'), pd.Series([False,False,True,False], index=list("abcd")),
+         [False,False,True,False], "a"] + LISTIDXER
+
+ILIST = [[0], [1,3], 2]
+IEMPTY = [[], slice(3, 3), slice(3, -1), []]
+ILOC_L = [slice(None), slice(2, 8), BLIST, ] + ILIST
+ILOC_R = [slice(None), slice(1, 3), [False,False,True,False], ] + ILIST
+
+FAIL_INDEXERS = [['z'], ['a', 'z'], pd.Series(['a', 'z']), BLIST, pd.DataFrame(dict(a=[1, 2, 3]))]
 
 O = [[0, 0, 0], [0, 0, 0]]
 I = [[1, 1, 1], [1, 1, 1]]
@@ -53,5 +99,3 @@ def _get_dios(ser, i):
 @pytest.fixture()
 def getDtDiosAligned(datetime_series):
     return _get_dios(datetime_series, 5)
-
-