diff --git a/Readme.md b/Readme.md
index 4257c10db0607be3adf78e104aadc8e4a1dbe32e..7fe6d73cbaa39641c75024c0e026bb85aaa35b01 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,13 +1,110 @@
+DictOfSeries (soon renamed to SoS?)
+===================================
+
 Features
 --------
-
-* dictionary of Series (dios)
-* fast as pd.DataFrame
-* every 'column' has its own index
+* quite as fast as pd.DataFrame
+* every *column* has its own index
 * use very less memory then a disalignd pd.Dataframe
-* `dios[var]` where `var` can be a list (or any iterable object) or a string
-* `dios[slice]` where `slice` can be a row slicer
-* `dios.loc[rowindexer]` act like `pandas.Series().loc[rowindexer]` for each series in the dios 
-* `dios.loc[rowindexer, columns]` like `dios.loc[rowindexer]` but for a subset of columns, which can be specified by a iterable, slice(on columns) or string 
-* `+,-,*,/,//,%` and `==,!=,>,>=,<=,<` and `~,&,|,^` and `is, in, len, all, any, empty, columns` are implemented
-* also `pipe()` (and as alias `foreach()`) is implemented, which pass any `pandas.Series`-method to every series in the dios and return the resulting dios 
+* act quite like pd.DataFrame
+* additional align locator (`.aloc[]`)
+
+
+Indexing
+--------
+
+- `di[]` and `di.loc[]`, `di.iloc[]` and `di.at[]`, `di.iat[]` - should behave exactly like 
+  their counter-parts from pd.Dataframe. 
+  Most indexers are directly passed to the underling columns-series or row-series. 
+  
+- on selecting operations, Dios simply throw out rows, that wasn't selected, 
+  instead of using `nan`'s, like pd.Dataframe do.
+  
+- on writing operations, analogous to selecting, only selected rows are changed, un-selected rows preserve
+  their value. 
+  
+- `dios[BoolDiosLike]` - like pd.DataFrame, dios accept boolean multiindexer (boolean pd.Dataframe 
+  or boolean Dios) columns and rows from the multiindexer align with the dios. 
+  This means that only matching columns are selected/written, the same apply for rows. 
+  Nevertheless columns, that are empty after applying the indexer, are preserved, with the effect
+  that the resulting Dios always have the same (column)-dimension that the initial Dios.
+  (This is the exact same behaivior as pd.DataFrame handle multiindexer, 
+  despite that miss-matching columns are filled with nan's)
+
+- additional there is a `di.aloc[..]` indexing method. Unlike `iloc` and `loc` indexers and values
+  fully align if possible. Also this method handle missing values gratefully. In contrast 
+  to `di[BoolDiosLike]`, empty columns are **not** preserved on selecting. Briefly:
+  
+  Grateful handling of non-alignable indexer:
+  - **lists** (including non-boolean Series, only `ser.values` are used)
+    - as column indexer: only matching columns are used
+    - as row indexer: only matching rows are used in every series of the column
+  - **single labels** on columns or rows: use if match 
+  
+  Alignable indexer are:
+  - **boolean-series** (a missing index is treated like an existing `False` value)
+    - as **column indexer**:  The index should contain column names. If the corresponding value is `True` and 
+      the column exist, the column will be selected/written.
+    - as **row indexer**: The indexer will be applied on all (selected) columns. 
+      On every column the index of the boolean-series is aligned with the index of underling series. 
+      If the corresponding value is `True`, the row will be selected/written.
+  - **boolean-Dios**: work like `dios[BoolDiosLike]` (see above), but do not preserve empty columns on selecting.
+  - **pd.DataFrame**: like boolean-Dios
+  
+  Alignable values are:
+  - **series**: align with every column
+  - **Dios**: full align on columns and rows
+  - **pd.DataFrame**: like Dios
+  
+
+Properties
+----------
+- columns
+- dtype
+- itype  (see section Itype)
+- empty 
+
+
+Methods and implied features
+-------
+Work mostly like analogous methods from pd.DataFrame.
+- copy()
+- copy_empty()
+- all()
+- any()
+- squeeze()
+- to_df()
+- apply()
+- astype()
+- memory_usage()
+- `in`
+- `is`
+- `len(Dios)`
+
+
+Operators and Comparators
+---------
+- arithmetical: `+ - * ** // / %` and `abs()`
+- boolean: `&^|~` 
+- comparators: `== != > >= < <=`
+
+Itype
+-----
+DictOfSeries holds multiple series, where possibly every series can have a different index length 
+and index type. Different index length, is solved with some aligning magic, or simply fail, if 
+aligning makes no sense (eg. assigning the very same list to series of different length).
+The bigger problem is the type of the index. If one series has a alphabetical index, an other 
+an numeric index, selecting along columns, can just fail in every scenario. To keep track of the
+types of index or to prohibit the inserting of a *not fitting* index type, 
+we introduce a `itype`. This can be set on creation of a Dios and also changed during usage. 
+On change of the itype, all index of all series in the dios are casted to a new fitting type,
+if possible. Different cast-mechanisms are available. 
+
+If a itype prohibit some certain types of index, but a series with this index-type is inserted, 
+a implicit cast is done, with or without a warning, or an error is raised. The warning/error policy
+can be adjusted via global options. 
+
+Have fun :)
+
+ 
+
diff --git a/dios/dios.py b/dios/dios.py
index 30311070d9ed969e2f8d877b021d8688074808be..74ecaf463b8191e8ae502a32e1b3bf327a626ed2 100644
--- a/dios/dios.py
+++ b/dios/dios.py
@@ -19,15 +19,14 @@ _is_dict_like = dcom.is_dict_like
 _is_number = dcom.is_number
 _is_hashable = dcom.is_hashable
 
-import pandas.core.common as ccom
-_is_bool_indexer = ccom.is_bool_indexer
+from pandas.core.common import is_bool_indexer as _is_bool_indexer
 
-# """
-# Unlike the example says, return lists False, not True
-# >>is_iterator([1, 2, 3])
-# >>False
-# """
-# from pandas.core.dtypes.common import is_iterator
+"""
+Unlike the example says, return lists False, not True
+>>is_iterator([1, 2, 3])
+>>False
+"""
+from pandas.core.dtypes.common import is_iterator as _is_iterator
 
 
 def _is_list_like_not_nested(obj):
@@ -95,9 +94,12 @@ class DictOfSeries:
             cast_to_itype(s, self.itype, policy=self._policy, inplace=True)
 
     def _init_insert_data(self, data, columns):
+
         def incols(c):
             return c in columns if columns is not None else True
 
+        data = list(data) if _is_iterator(data) else data
+
         if isinstance(data, dict) or _is_dios_like(data):
             for k in data:
                 if incols(k):
@@ -118,6 +120,7 @@ class DictOfSeries:
 
     def _insert(self, col, val):
         """Insert a fresh new value into self"""
+        val = list(val) if _is_iterator(val) else val
         if _is_dios_like(val):
             if len(val) > 1:
                 raise ValueError(f"Cannot insert DictOfSeries "
@@ -163,7 +166,7 @@ class DictOfSeries:
 
     def __getitem__(self, key):
         """ dios[key] -> dios/series """
-
+        key = list(key) if _is_iterator(key) else key
         if isinstance(key, tuple):
             raise KeyError("tuples are not allowed")
         elif _is_hashable(key):
@@ -216,7 +219,7 @@ class DictOfSeries:
 
     def __setitem__(self, key, value):
         """ dios[key] = value """
-
+        key = list(key) if _is_iterator(key) else key
         if isinstance(key, tuple):
             raise KeyError(f"{key}. tuples are not allowed")
 
diff --git a/dios/locator.py b/dios/locator.py
index ee4fceb9c82f773db634a5e21b790f73916cfc3b..651334b1d63d54de87142f0f4f841b5f93944185 100644
--- a/dios/locator.py
+++ b/dios/locator.py
@@ -1,6 +1,10 @@
-from dios.dios import _is_dios_like, _is_bool_series, _is_list_like_not_nested
-import pandas as pd
+from dios.dios import (
+    _is_dios_like,
+    _is_bool_series,
+    _is_list_like_not_nested,
+    _is_iterator)
 
+import pandas as pd
 import pandas.core.common as ccom
 import pandas.core.dtypes.common as dcom
 _is_list_like = dcom.is_list_like
@@ -20,6 +24,8 @@ class _Indexer:
 
     def _unpack_key(self, key):
 
+        key = list(key) if _is_iterator(key) else key
+
         if isinstance(key, tuple):
             if len(key) > 2:
                 raise KeyError("To many indexers")