diff --git a/dios/dios.py b/dios/dios.py
index a88d1beaaf18e2e055003b2fa8ba2dc5189bc9e9..514ae2866d110c46dd5377d5076fa43df96cb06f 100644
--- a/dios/dios.py
+++ b/dios/dios.py
@@ -6,7 +6,7 @@ import pandas as pd
 import numpy as np
 import operator as op
 from functools import partialmethod
-from itertools import zip_longest
+from itertools import zip_longest, compress, takewhile
 
 from functools import wraps
 from collections import OrderedDict
@@ -94,7 +94,6 @@ class DictOfSeries:
         if columns is not None:
             for c in columns:
                 if c not in self.columns:
-                    # todo: itype maybe problemetic because Index is BaseIndex/ObjIndex(in future)
                     self._insert(c, pd.Series())
 
         for s in self._data:
@@ -124,16 +123,12 @@ class DictOfSeries:
 
     @property
     def columns(self):
-        return self._data.index.copy()
+        return self._data.index
 
     @columns.setter
     def columns(self, newindex):
         self._data.index = newindex
 
-    @property
-    def values(self):
-        return np.array([s.values for s in self._data])
-
     @property
     def itype(self):
         return self._itype
@@ -170,57 +165,72 @@ class DictOfSeries:
         Notes:
           - [1] If ``iterable`` contains any(!) label that does not exist, a KeyError is raised.
         """
-        if is_hashable(key) and key is not None:
-            if key not in self.columns:
-                # bug-fix(?): integer defaults to iloc ??
-                # `s = series([5,6], index=['a','b'])`
-                # s[1] returns 6 instead of raising a KeyError
-                raise KeyError(f"'{key}'")
-            new = self._data.loc[key]
+        if isinstance(key, tuple):
+            raise KeyError("tuples are not allowed")
+        elif is_hashable(key):
+            new = self._data.at[key]
+        elif is_dios_like(key):
+            # work on rows and columns
+            new = self._getitem_bool_dios(key)
+        elif isinstance(key, slice):
+            # work on rows
+            new = self._slice(key)
         else:
-            keys, ixs, ixalign = self._unpack_key(key)
+            # work on columns
             new = self.copy_empty()
-            for i, k in enumerate(keys):
-                new[k] = self._get_item(k, ixs[i], ixalign)
+            new._data = self._data.loc[key]
         return new
 
-    def _get_item(self, key, ix, ixalign):
-        ser = self._data.loc[key]
-        if ixalign:
-            ix = ser.index.intersection(ix.index)
-        return ser.loc[ix]
+    def _slice(self, key):
+        """slices self, return copy"""
+        if key == slice(None):
+            return self.copy()
+
+        new = self.copy_empty()
+        for k in self.columns:
+            new._data.at[k] = self._data.at[k].loc[key]
+
+        return new
+
+    def _getitem_bool_dios(self, key):
+        # align columns
+        keys = self.columns.intersection(key.columns).to_list()
+        for k in keys:
+            if not is_bool_indexer(key[k]):
+                raise ValueError("Must pass DictOfSeries with boolean values only")
+
+        new = self.copy_empty()
+        for k in keys:
+            ser = self._data.at[key]
+            boolser = key[k]
+            # align rows
+            idx = boolser[boolser].index.intersection(ser.index)
+            new._data.at[k] = ser.loc[idx]
+        return new
 
     def __setitem__(self, key, value):
-        """ dios[x] = y
+        """ dios[key] = value """
 
-        Examples:
-          - ``dios['a'] = pd.Series()`` -> Set a new pd.Series to an existing column or add it as `new column`.
-          - ``dios['a'] = Any`` -> Pass ``any`` to the pd.Series in the corresponding existing(!) column. [1],[2]
-          - ``dios[iterable] = Any`` -> Pass ``any`` to the pd.Series's in the corresponding set of columns. [1],[2],[3]
-          - ``dios[slice] = Any`` -> Pass ``any`` to all(!) sliced pd.Series's from the current dios. [1],[2]
+        if isinstance(key, tuple):
+            raise KeyError(f"{key}. tuples are not allowed")
 
-        Notes:
-          - [1] The length of ``Any`` must be be equal to the length of every sliced pd.Series.
-          - [2] If ``Any`` is a ``DictOfSeries`` the behavior depends on the option ``dios_to_dios_method``
-            in the ``options`` dictionary.
-          - [3] If ``iterable`` contains any(!) label that does not exist, a KeyError is raised.
-        """
-        ixalign = False
+        elif is_hashable(key) and key not in self.columns:
+            self._insert(key, value)
+            return
 
-        if is_hashable(key) and key is not None:
-            if key not in self.columns:
-                self._insert(key, value)
-                return
-            else:
-                keys, ixs = [key], [slice(None)]
-        else:
-            keys, ixs, ixalign = self._unpack_key(key)
+        data = self.__getitem__(key)
 
-        assert len(keys) == len(ixs)
+        if isinstance(data, pd.Series):
+            data.loc[:] = value
+            self._data.at[key] = data
 
-        gen = self._unpack_value(keys, ixs, value)
-        for tup in gen:
-            self._set_item(*tup, ixalign)
+        elif isinstance(data, self.__class__):
+            for k in data.columns:
+                s = data._data.at[k]
+                s.loc[:] = value
+                self._data.at[k] = s
+        else:
+            raise AssertionError(f"getitem returned data of type {type(data)}")
 
     def _set_item(self, key, ix, right, ixalign=False):
         """Set a value (scalar or list or series)"""
@@ -237,8 +247,11 @@ class DictOfSeries:
     def _insert(self, col, val):
         """Insert a fresh new value into self"""
         if is_dios_like(val):
+            if len(val) > 1:
+                raise ValueError(f"Cannot insert DictOfSeries "
+                                 f"with more than one series")
             val = val.squeeze()
-        elif is_list_like(val) and not is_nested_list_like(val):
+        else:
             val = pd.Series(val)
 
         if not isinstance(val, pd.Series):
@@ -252,7 +265,7 @@ class DictOfSeries:
 
         # prepare value
         val = list(val) if is_iterator(val) else val
-        val = val.squeeze() if is_dios_like(val) else val
+        val = val.squeeze(axis=1) if is_dios_like(val) else val
         dioslike, nlistlike = is_dios_like(val), is_nested_list_like(val)
 
         # check value
@@ -276,51 +289,32 @@ class DictOfSeries:
                 yield key, ix, val
 
     def _unpack_key(self, key):
-        """ Determine keys and indexer by type of key. This does not deal
-            with single (hashable) label-access, only higher dimension objects
-            are handled..
-        """
-        ixalign = False
         key = list(key) if is_iterator(key) else key
 
-        # bool indexer
-        # ------------
-        # bool indexer always work on rows, so they need to have
-        # an index, to which we can align to. This is necessary
-        # because we could hold series of different lenght/indexes.
-        if is_bool_indexer(key):
-            if not isinstance(key, pd.Series):
-                raise ValueError("Must pass Series with boolean values only")
+        # on rows
+        if isinstance(key, slice):
             keys = self.columns
-            indexer, ixalign = [key.loc[key]] * len(keys), True
+            slice_ = key
 
-        elif is_dios_like(key):
-            keys = self.columns.intersection(key.columns).to_list()
-            for k in keys:
-                if not is_bool_indexer(key[k]):
-                    raise ValueError("Must pass DictOfSeries with boolean values only")
-            indexer, ixalign = [key[k].loc[key[k]] for k in keys], True
-        # slice
-        # -----
-        # slices always work rows too, but never fail and
-        # doesnt need alignment
-        elif isinstance(key, slice):
-            keys = self.columns
-            indexer = [key] * len(keys)
+        # on columns
+        elif is_bool_indexer(key):
+            if len(key) != len(self.columns):
+                raise ValueError("bool list must have same length than columns")
+            keys = list(compress(self.columns, key))
+            slice_ = slice(None)
 
-        # list-like
-        # ---------
-        # list like stuff, just selects columns
+        # on columns
         elif is_list_like(key) and not is_nested_list_like(key):
             key = key.values if isinstance(key, pd.Series) else key
             keys = [k for k in key if k in self.columns]
-            fail = [k for k in key if k not in self.columns]
-            if fail:
-                raise KeyError(f"{fail} not in index")
-            indexer = [slice(None)] * len(keys)
+            slice_ = slice(None)
+            if len(keys) != len(key):
+                fail = [k for k in key if k not in self.columns]
+                if fail:
+                    raise KeyError(f"{fail} not in index")
         else:
-            raise KeyError(f"{type(key)}")
-        return keys, indexer, ixalign
+            raise KeyError(key)
+        return keys, slice_
 
     @property
     def loc(self):
@@ -332,6 +326,11 @@ class DictOfSeries:
         from dios.locator import _iLocIndexer
         return _iLocIndexer(self)
 
+    @property
+    def align(self):
+        from dios.locator import _aLocIndexer
+        return _aLocIndexer(self)
+
     def __str__(self):
         return self.__repr__()
 
diff --git a/dios/itypes.py b/dios/itypes.py
index bfbda70ef240e26c384c3ed8f6fd8bd841fc11f0..3005c2d8da6c570d597a1a7b90e8d8db02775224 100644
--- a/dios/itypes.py
+++ b/dios/itypes.py
@@ -23,6 +23,7 @@ class DatetimeItype(__Itype):
     repr = 'DatetimeItype'
     unique = True
     subtypes = (pd.DatetimeIndex,)
+    min_pditype = pd.DatetimeIndex([])
 
 
 class IntegerItype(__Itype):
@@ -30,6 +31,7 @@ class IntegerItype(__Itype):
     repr = 'IntegerItype'
     unique = True
     subtypes = (pd.RangeIndex, pd.Int64Index, pd.UInt64Index, int)
+    min_pditype = pd.Int64Index([])
 
 
 class FloatItype(__Itype):
@@ -37,6 +39,7 @@ class FloatItype(__Itype):
     repr = 'FloatItype'
     subtypes = (pd.Float64Index, float)
     unique = True
+    min_pditype = pd.Float64Index([])
 
 
 # class MultiItype(__Itype):
@@ -52,6 +55,7 @@ class NumericItype(__Itype):
     _subitypes = (IntegerItype, FloatItype)
     subtypes = (_subitypes + IntegerItype.subtypes + FloatItype.subtypes)
     unique = False
+    min_pditype = pd.Float64Index([])
 
 
 class MixedItype(__Itype):
@@ -61,6 +65,7 @@ class MixedItype(__Itype):
     _subitypes = (DatetimeItype, IntegerItype, FloatItype, NumericItype)
     _otheritypes = (pd.CategoricalIndex, pd.IntervalIndex, pd.PeriodIndex, pd.TimedeltaIndex, pd.Index)
     subtypes = (_subitypes + _otheritypes + DatetimeItype.subtypes + NumericItype.subtypes)
+    min_pditype = pd.Index([])
 
 
 def is_itype(obj, itype):
@@ -151,8 +156,13 @@ def cast_to_itype(series, itype, policy='lossless', err='raise', inplace=False):
         raise ValueError(f"err={err}")
     if not inplace:
         series = series.copy()
+    itype = get_itype(itype)
     series.itype = get_itype(series.index)
 
+    if series.empty:
+        return pd.Series(index=itype.min_pditype)
+
+
     # up-cast issn't necessary because a dios with a higher
     # itype always can take lower itypes.
     # series can have dt/int/float/mixed
diff --git a/dios/locator.py b/dios/locator.py
index cb2f8b4e54fe4ba0762c56ed7f35545a6ba185ee..3f3d32e9d11d84c20622021cad696c26b6474160 100644
--- a/dios/locator.py
+++ b/dios/locator.py
@@ -6,97 +6,107 @@ class _Indexer:
     def __init__(self, _dios):
         self._dios = _dios
         self._data = _dios._data
-        self._columns = _dios.columns
 
-    def __setitem__(self, key, val):
-        keys, rkey, lowdim = self._unpack_key(key)
-        ix, ixalign = self._unpack_rowkey(rkey)
-        gen = _unpack_value(keys, ix, val)
 
-        for tup in gen:
-            self._set_item(*tup, ixalign=ixalign)
+class _LocIndexer(_Indexer):
 
-    def __getitem__(self, key):
-        keys, rkey, lowdim = self._unpack_key(key)
-        ix, ixalign = self._unpack_rowkey(rkey)
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
 
-        if is_hashable(ix):
-            new = pd.Series()
-            new.name = ix
+    def __getitem__(self, key):
+        if isinstance(key, tuple):
+            if len(key) > 2:
+                raise KeyError("To many indexers")
+            rowkey, colkey = key
         else:
-            new = self._dios.copy_empty()
+            rowkey, colkey = key, slice(None)
+
+        if isinstance(rowkey, tuple):
+            raise KeyError(f"{key}. tuples are not allowed.")
+
+        data = self._dios[colkey]
 
-        # set series in new dios OR set values in
-        # new series if ix is hashable (see above)
-        for k in keys:
-            new[k] = self._get_item(k, ix, ixalign=ixalign)
-            maby_set_series_name(new[k], k)
+        # .loc[:, any] - simple low-cost optimization
+        if isinstance(rowkey, slice) and rowkey == slice(None):
+            new = data.copy()
 
-        # squeeze to series if a single label was given
-        # OR squeeze to val if additional ix is hashable
-        if lowdim:
-            new = new.squeeze()
+        # .loc[any, scalar]
+        elif isinstance(data, pd.Series):
+            new = data.loc[rowkey]
+
+        elif isinstance(data, self._dios.__class__):
+            # .loc[scalar, any]
+            if is_hashable(rowkey):
+                new = pd.Series(index=type(data.columns)([]))
+                for k in data.columns:
+                    s = data._data.at[k]
+                    new.at[k] = s.loc[rowkey]
+
+            # .loc[non-scalar, non-scalar]
+            else:
+                new = self._dios.copy_empty()
+                for k in data.columns:
+                    s = data._data.at[k]
+                    new._data.at[k] = s.loc[rowkey]
+        else:
+            raise AssertionError(f"getitem returned data of type {type(data)}")
 
         return new
 
-    def _unpack_rowkey(self, rkey):
-        align = False
-        if is_dios_like(rkey) or is_nested_list_like(rkey):
-            raise ValueError("Cannot index with multidimensional key")
-        if is_bool_indexer(rkey):
-            if not isinstance(rkey, pd.Series):
-                raise ValueError("Must pass Series with boolean values only")
-            rkey, align = rkey[rkey], True  # kill `False`
-        return rkey, align
-
-    @abstractmethod
-    def _unpack_key(self, key):
-        ...
+    def __setitem__(self, key, value):
+        if isinstance(key, tuple):
+            if len(key) > 2:
+                raise KeyError("To many indexers")
 
-    @abstractmethod
-    def _get_item(self, key, ix, ixalign=False):
-        ...
+            rowkey, colkey = key
 
-    @abstractmethod
-    def _set_item(self, ser, ix, val, ixalign=False):
-        ...
+            if isinstance(rowkey, tuple):
+                raise KeyError(f"{key}. tuples are not allowed.")
 
+            # .loc[-,new-scalar] = val
+            # if a unknown colkey was given, we insert it and ignore rowkey
+            if is_hashable(colkey) and colkey not in self._dios.columns:
+                self._dios._insert(colkey, value)
+                return
+        else:
+            rowkey, colkey = key, slice(None)
 
-class _LocIndexer(_Indexer):
+        # get .loc[any,any] - we use key(!) here
+        data = self.__getitem__(key)
 
-    def __init__(self, *args, **kwargs):
-        super().__init__(*args, **kwargs)
-        # we can use set item here, as this
-        # also uses .loc for setting values
+        if is_dios_like(value) or is_nested_list_like(value):
+            raise TypeError(".loc[] cannot be used to set multi-dimensional values, use .aloc[] instead.")
 
-    def _set_item(self, *args, **kwargs):
-        # we can use DictionaryOfSeries._set_item()
-        # here because it also uses .loc
-        self._dios._set_item(*args, **kwargs)
+        # .loc[scalar, any] or .loc[any, scalar]
+        if isinstance(data, pd.Series):
+            # .loc[scalar, non-scalar] - column-labeled series
+            if is_hashable(rowkey):
+                data.loc[:] = value
+                for k in data.index:
+                    s = data._data.at[k]
+                    s.at[rowkey] = data.at[k]
+                    self._data.at[k] = s
 
-    def _get_item(self, key, ix, ixalign=False):
-        ser = self._data.loc[key]
-        if ixalign:
-            ix = ser.index.intersection(ix.index)
-        return ser.loc[ix]
+            # .loc[non-scalar, scalar] - (normal) row-labeled series
+            elif is_hashable(colkey):
+                data.loc[rowkey] = value
+                self._data.at[colkey] = data
 
-    def _unpack_key(self, key):
-        lowdim = False
-        if isinstance(key, tuple):
-            key, ckey, *fail = key
-            if fail:
-                raise KeyError("To many indexers")
-            if is_dios_like(ckey):
-                raise ValueError("Cannot index with multidimensional key")
-            if is_bool_series(ckey):
-                keys = ckey.where(ckey).dropna().index.to_list()
             else:
-                if is_hashable(ckey):
-                    ckey, lowdim = [ckey], True
-                keys = self._data.loc[ckey].index.to_list()
+                raise AssertionError(f"getitem returned data of type {type(data)}")
+
+        # .loc[non-scalar, non-scalar]
+        elif isinstance(data, self._dios.__class__):
+            for k in data.columns:
+                s = data._data.at[k]
+                s.loc[rowkey] = value
+                self._data.at[k] = s
+
+        # .loc[scalar, scalar]
         else:
-            keys = self._columns.to_list()
-        return keys, key, lowdim
+            s = self._data.at[colkey]
+            s.at[rowkey] = value
+            self._data.at[colkey] = s
 
 
 class _iLocIndexer(_Indexer):
@@ -130,7 +140,7 @@ class _iLocIndexer(_Indexer):
             if fail:
                 raise KeyError("To many indexers")
             if is_dios_like(ckey):
-                raise ValueError("Cannot index with multidimensional key")
+                raise ValueError("Cannot index with multi-dimensional key")
             if is_bool_series(ckey):
                 keys = ckey.where(ckey).dropna().index.to_list()
             else:
@@ -142,6 +152,20 @@ class _iLocIndexer(_Indexer):
         return keys, key, lowdim
 
 
+class _aLocIndexer(_Indexer):
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+    def __setitem__(self, key, value):
+        # fallback to loc
+        if not is_dios_like(value) and not is_nested_list_like(value):
+            self._dios.loc[key] = value
+
+    def __getitem__(self, item):
+        return item
+
+
 def _unpack_value(keys, ix, val):
     """Return a generator that yield (column key, corresponding value, value-align(bool) )
     for all columns.