Skip to content
Snippets Groups Projects
Commit 243a0d28 authored by Sebastian Müller's avatar Sebastian Müller 🐈
Browse files

Merge branch 'add_mo_polynomial' into 'main'

add mo_polynomial with tests

See merge request !82
parents aae25f00 b8fc1ec3
No related branches found
No related tags found
1 merge request!82add mo_polynomial with tests
Pipeline #279529 passed with stages
in 6 minutes and 44 seconds
!> \file mo_polynomial.f90
!> \brief \copybrief mo_polynomial
!> \details \copydetails mo_polynomial
!> \brief Module to handle polynomials.
!> \details This module provides routines to deal with polynomials like evaluation, root finding or derivation.
!!
!! Polynomials of order (n-1) are represented by an array of n coefficients `p = (p_1, p_2, ..., p_n)` starting with the coefficient for the biggest exponent:
!! \code{.f90}
!! P(x) = p_1 * x^(n-1) + p_2 * x^(n-2) ... + p_n
!! \endcode
!!
!> \version 0.1
!> \authors Sebastian Mueller
!> \date Oct 2024
!> \copyright Copyright 2005-\today, the CHS Developers, Sabine Attinger: All rights reserved.
!! FORCES is released under the LGPLv3+ license \license_note
module mo_polynomial
use mo_kind, only : i4, dp
use mo_utils, only : equal
use mo_message, only : error_message
implicit none
private
public :: poly_eval
public :: poly_deriv
public :: poly_order
public :: poly_root
public :: poly_root_newton
public :: poly_root_halley
public :: poly_root_cubic
contains
!> \brief Evaluate polynomial from given coefficients p(1) * x^(n-1) + ... + p(n).
!> \return Function value for given point.
real(dp) function poly_eval(p, x)
!> array with coefficients
real(dp), intent(in) :: p(:)
!> point for evaluation
real(dp), intent(in) :: x
integer(i4) :: n, i
n = size(p) ! should be > 0
if (n == 0_i4) call error_message("mo_polynomial : p is an empty array.")
! Horner's scheme
poly_eval = p(1)
do i = 2_i4, n
poly_eval = poly_eval * x + p(i)
end do
end function poly_eval
!> \brief Coefficients of the derivative of a polynomial from given coefficients p(1) * x^(n-1) + ... + p(n).
!> \return Coefficient array for the derivative d_p(1) * x^(n-2) + ... + d_p(n-1) with d_p(i) = (n - i) * p(i)
function poly_deriv(p) result(d_p)
!> array with coefficients
real(dp), intent(in) :: p(:)
real(dp) :: d_p(max(size(p) - 1_i4, 1_i4))
integer(i4) :: n, i
n = size(p)
if (n == 0_i4) call error_message("mo_polynomial : p is an empty array.")
if (n == 1_i4) d_p(1) = 0.0
do i = 1_i4, n - 1_i4
d_p(i) = (n - i) * p(i)
end do
end function poly_deriv
!> \brief Derive polynomial order from given coefficients p(1) * x^(n-1) + ... + p(n).
!> \return Order of the polynomial (determined by non zero entry in coefficients). order < n.
integer(i4) function poly_order(p)
!> array with coefficients
real(dp), intent(in) :: p(:)
integer(i4) :: n, i
n = size(p)
if (n == 0_i4) call error_message("mo_polynomial : p is an empty array.")
poly_order = 0_i4
do i = 1_i4, n
if (abs(p(i)) > 0.0_dp) then
poly_order = (n - i)
return
end if
end do
end function poly_order
!> \brief Find root of a polynomial from given coefficients p(1) * x^(n-1) + ... + p(n) with Householder methods.
!> \return Coefficient array for the derivative.
function poly_root(p, x0, delta, max_n, method, raise, status) result(root)
!> array with coefficients
real(dp), intent(in) :: p(:)
!> initial guess
real(dp), intent(in) :: x0
!> convergence criteria (default: 1e-2)
real(dp), intent(in), optional :: delta
!> maximum number of iterations (default: 50)
integer(i4), intent(in), optional :: max_n
!> method to use: 0 - will be selected by order, 1 - Newton, 2 - Halley (default ord > 1), 3 - cubic Householder
integer(i4), intent(in), optional :: method
!> whether to raise an error if status is not 0 (default: .true.)
logical, intent(in), optional :: raise
!> status of root finding: 0 - found root, 1 - max number of iterations reached, 2 - not converging, 3 - polynomial is constant
integer(i4), intent(out), optional :: status
real(dp) :: root
integer(i4) :: method_, status_
logical :: raise_
method_ = 0_i4
raise_ = .true.
if ( present(method) ) method_ = method
if ( present(raise) ) raise_ = raise
if ( method_ == 0_i4 ) then
if ( poly_order(p) < 2 ) then
method_ = 1_i4
else
method_ = 2_i4 ! Halley is optimal for polynomials
end if
end if
select case(method_)
case(1_i4) ! Newton
root = poly_root_newton(p, x0, delta, max_n, status_)
case(2_i4) ! Halley
root = poly_root_halley(p, x0, delta, max_n, status_)
case(3_i4) ! cubic Householder
root = poly_root_cubic(p, x0, delta, max_n, status_)
case default
call error_message("mo_polynomial::poly_root : 'method' needs to be in {1,2,3}.")
end select
if ( present(status) ) status = status_
if ( status_ /= 0_i4 .and. raise_ ) then
select case(status_)
case(1_i4)
call error_message("mo_polynomial::poly_root : max number of iterations reached.")
case(2_i4)
call error_message("mo_polynomial::poly_root : stuck on plateau.")
case(3_i4)
call error_message("mo_polynomial::poly_root : given polynomial is constant.")
end select
end if
end function poly_root
!> \brief Find root of a polynomial from given coefficients p(1) * x^(n-1) + ... + p(n) with Newtons method.
!> \return Coefficient array for the derivative.
function poly_root_newton(p, x0, delta, max_n, status) result(root)
!> array with coefficients
real(dp), intent(in) :: p(:)
!> initial guess
real(dp), intent(in) :: x0
!> convergence criteria (default: 1e-2)
real(dp), intent(in), optional :: delta
!> maximum number of iterations (default: 50)
integer(i4), intent(in), optional :: max_n
!> status of root finding: 0 - found root, 1 - max number of iterations reached, 2 - not converging, 3 - polynomial is constant
integer(i4), intent(out), optional :: status
real(dp) :: root
real(dp) :: d_p(size(p) - 1)
integer(i4) :: n, i, status_, max_n_
real(dp) :: delta_, df
delta_ = 1.0e-02
max_n_ = 50_i4
if ( present(delta) ) delta_ = delta
if ( present(max_n) ) max_n_ = max_n
root = x0
if ( poly_order(p) < 1 ) then
if ( present(status) ) status = 3_i4
return
end if
status_ = 1_i4
d_p = poly_deriv(p)
! newton iteration
do i = 1_i4, max_n_
! check if current iteration is already fine
if ( abs(poly_eval(p, root)) < delta_ ) then
status_ = 0_i4
exit
end if
! if derivative is 0, return and set status to 2
df = poly_eval(d_p, root)
if (equal(df, 0.0_dp)) then
status_ = 2_i4
exit
end if
! next value by newton method
root = root - poly_eval(p, root) / df
end do
if ( present(status) ) status = status_
end function poly_root_newton
!> \brief Find root of a polynomial from given coefficients p(1) * x^(n-1) + ... + p(n) with Halleys method.
!> \return Coefficient array for the derivative.
function poly_root_halley(p, x0, delta, max_n, status) result(root)
!> array with coefficients
real(dp), intent(in) :: p(:)
!> initial guess
real(dp), intent(in) :: x0
!> convergence criteria (default: 1e-2)
real(dp), intent(in), optional :: delta
!> maximum number of iterations (default: 50)
integer(i4), intent(in), optional :: max_n
!> status of root finding: 0 - found root, 1 - max number of iterations reached, 2 - not converging, 3 - polynomial is constant
integer(i4), intent(out), optional :: status
real(dp) :: root
real(dp) :: d_p1(max(size(p) - 1_i4, 1_i4)), d_p2(max(size(p) - 2_i4, 1_i4))
integer(i4) :: n, i, status_, max_n_
real(dp) :: delta_, df1, df2, f_df
delta_ = 1.0e-02
max_n_ = 50_i4
if ( present(delta) ) delta_ = delta
if ( present(max_n) ) max_n_ = max_n
root = x0
if ( poly_order(p) < 1 ) then
if ( present(status) ) status = 3_i4
return
end if
status_ = 1_i4
d_p1 = poly_deriv(p)
d_p2 = poly_deriv(d_p1)
! halley iteration
do i = 1_i4, max_n_
! check if current iteration is already fine
if ( abs(poly_eval(p, root)) < delta_ ) then
status_ = 0_i4
exit
end if
! if derivative is 0, return and set status to 2
df1 = poly_eval(d_p1, root)
if (equal(df1, 0.0_dp)) then
status_ = 2_i4
exit
end if
df2 = poly_eval(d_p2, root)
f_df = poly_eval(p, root) / df1
! next value by halley method
root = root - f_df / (1.0_dp - f_df * df2 / df1 * 0.5_dp)
end do
if ( present(status) ) status = status_
end function poly_root_halley
!> \brief Find root of a polynomial from given coefficients p(1) * x^(n-1) + ... + p(n) with cubic Householder method.
!> \return Coefficient array for the derivative.
function poly_root_cubic(p, x0, delta, max_n, status) result(root)
!> array with coefficients
real(dp), intent(in) :: p(:)
!> initial guess
real(dp), intent(in) :: x0
!> convergence criteria (default: 1e-2)
real(dp), intent(in), optional :: delta
!> maximum number of iterations (default: 50)
integer(i4), intent(in), optional :: max_n
!> status of root finding: 0 - found root, 1 - max number of iterations reached, 2 - not converging, 3 - polynomial is constant
integer(i4), intent(out), optional :: status
real(dp) :: root
real(dp) :: d_p1(max(size(p) - 1_i4, 1_i4)), d_p2(max(size(p) - 2_i4, 1_i4)), d_p3(max(size(p) - 3_i4, 1_i4))
integer(i4) :: n, i, status_, max_n_
real(dp) :: delta_, df1, df2, df3, f_df1, df2_df1
delta_ = 1.0e-02
max_n_ = 50_i4
if ( present(delta) ) delta_ = delta
if ( present(max_n) ) max_n_ = max_n
root = x0
if ( poly_order(p) < 1 ) then
if ( present(status) ) status = 3_i4
return
end if
status_ = 1_i4
d_p1 = poly_deriv(p)
d_p2 = poly_deriv(d_p1)
d_p3 = poly_deriv(d_p2)
! halley iteration
do i = 1_i4, max_n_
! check if current iteration is already fine
if ( abs(poly_eval(p, root)) < delta_ ) then
status_ = 0_i4
exit
end if
! if derivative is 0, return and set status to 2
df1 = poly_eval(d_p1, root)
if (equal(df1, 0.0_dp)) then
status_ = 2_i4
exit
end if
df2 = poly_eval(d_p2, root)
df3 = poly_eval(d_p3, root)
f_df1 = poly_eval(p, root) / df1
df2_df1 = df2 / df1
! next value by cubic householder method
root = root - f_df1 * (1.0_dp - f_df1 * df2_df1 * 0.5_dp) / (1.0_dp - df2_df1 * f_df1 + df3 / df1 * f_df1 ** 2_i4 / 6.0_dp)
end do
if ( present(status) ) status = status_
end function poly_root_cubic
end module mo_polynomial
module test_mo_polynomial
use funit
use mo_kind, only: dp, i4
use mo_polynomial, only: poly_eval, poly_root, poly_order, poly_deriv
implicit none
real(dp), parameter, dimension(5) :: p = [1.0_dp, 0.0_dp, 0.0_dp, 1.0_dp, -1.0_dp]
real(dp), parameter :: x0 = -10.0_dp
real(dp), parameter :: delta = 1e-14_dp
real(dp), parameter :: tol=1e-4_dp
integer(i4), parameter :: max_n=2000_i4
contains
@test
subroutine test_polynomial()
real(dp), dimension(1) :: p1
real(dp), dimension(4) :: p4
real(dp) :: root
integer(i4) :: status
@assertEqual(poly_order(p), 4_i4)
@assertEqual(poly_order([1.0_dp]), 0_i4)
p1 = poly_deriv([1.0_dp])
@assertEqual(p1(1), 0.0_dp, tolerance=tol)
@assertEqual(poly_eval(p, 1.5_dp), 5.5625_dp, tolerance=tol)
p4 = poly_deriv(p)
@assertEqual(poly_eval(p4, 1.5_dp), 14.5_dp, tolerance=tol)
root = poly_root(p, x0, delta=delta, max_n=max_n, status=status, method=0)
@assertEqual(status, 0_i4)
@assertEqual(root, -1.2207440846057596_dp, tolerance=tol)
root = poly_root(p, x0, delta=delta, max_n=max_n, status=status, method=1)
@assertEqual(status, 0_i4)
@assertEqual(root, -1.2207440846057596_dp, tolerance=tol)
root = poly_root(p, x0, delta=delta, max_n=max_n, status=status, method=2)
@assertEqual(status, 0_i4)
@assertEqual(root, -1.2207440846057596_dp, tolerance=tol)
root = poly_root(p, x0, delta=delta, max_n=max_n, status=status, method=3)
@assertEqual(status, 0_i4)
@assertEqual(root, -1.2207440846057596_dp, tolerance=tol)
end subroutine test_polynomial
end module test_mo_polynomial
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment