Skip to content
Snippets Groups Projects
core.py 5.17 KiB
Newer Older
David Schäfer's avatar
David Schäfer committed
#! /usr/bin/env python
# -*- coding: utf-8 -*-

David Schäfer's avatar
David Schäfer committed
from math import ceil
David Schäfer's avatar
David Schäfer committed

import numpy as np
import pandas as pd

from config import Fields, FUNCMAP, NODATA
from funcs import Params
David Schäfer's avatar
David Schäfer committed
from dsl import evalExpression, parseFlag
from flagger import PositionalFlagger, BaseFlagger
from lib.types import ArrayLike
David Schäfer's avatar
David Schäfer committed


def _inferFrequency(data):
    return pd.tseries.frequencies.to_offset(pd.infer_freq(data.index))


def _periodToTicks(period, freq):
    return int(ceil(pd.to_timedelta(period)/pd.to_timedelta(freq)))


David Schäfer's avatar
David Schäfer committed
def flagNext(flagger: BaseFlagger, flags: pd.Series, n: int) -> pd.Series:
    idx = np.where(flagger.isFlagged(flags))[0]
    for nn in range(1, n + 1):
        nn_idx = np.clip(idx + nn, a_min=None, a_max=len(flags) - 1)
        nn_idx_unflagged = nn_idx[~flagger.isFlagged(flags.iloc[nn_idx])]
        flags.values[nn_idx_unflagged] = flags.iloc[nn_idx_unflagged - nn]
David Schäfer's avatar
David Schäfer committed
    return flags


def flaggingRunner(meta, flagger, data, flags=None):

    if flags is None:
        flags = flagger.emptyFlags(data)
    else:
        if not all(flags.columns == flagger.emptyFlags(data.iloc[0]).columns):
            raise TypeError("structure of given flag does not "
                            "correspond to flagger requirements")
David Schäfer's avatar
David Schäfer committed

    # NOTE:
    # we need an index frequency in order to calculate ticks
    # from given periods further down the road
    data.index.freq = _inferFrequency(data)
    assert data.index.freq, "no frequency deducable from timeseries"

    # the required meta data columns
    fields = [Fields.VARNAME, Fields.STARTDATE, Fields.ENDDATE]

    # NOTE:
    # the outer loop runs over the flag tests, the inner one over the
    # variables. Switching the loop order would complicate the
    # reference to flags from other variables within the dataset
    flag_fields = meta.columns.to_series().filter(regex=Fields.FLAGS)
    for flag_pos, flag_field in enumerate(flag_fields):

        # NOTE: just an optimization
        if meta[flag_field].dropna().empty:
            continue

        for _, configrow in meta.iterrows():

            flag_test = configrow[flag_field]
            if pd.isnull(flag_test):
                continue

            varname, start_date, end_date = configrow[fields]
            if varname not in data:
                continue

            dchunk = data.loc[start_date:end_date]
            if dchunk.empty:
                continue
            # NOTE:
            # within the activation period of a variable, the flag will
            # be initialized if necessary
David Schäfer's avatar
David Schäfer committed
            fchunk = (flags
                      .loc[start_date:end_date]
                      .fillna({varname: flagger.no_flag}))

David Schäfer's avatar
David Schäfer committed
            flag_name, flag_params = parseFlag(flag_test)

            # NOTE: higher flags might be overwritten by lower ones
David Schäfer's avatar
David Schäfer committed
            func = FUNCMAP.get(flag_name, None)
            if func:
                dchunk, fchunk = func(dchunk, fchunk, varname,
David Schäfer's avatar
David Schäfer committed
            else:
                raise RuntimeError(
                    "malformed flag field ('{:}') for variable: {:}"
David Schäfer's avatar
David Schäfer committed
                    .format(flag_test, varname))


            # flag a timespan after the condition is met,
            # duration given in 'flag_period'
            flag_period = flag_params.pop(Params.FLAGPERIOD, None)
            if flag_period:
                flag_params[Params.FLAGVALUES] = _periodToTicks(flag_period,
                                                                data.index.freq)

            # flag a certain amount of values after condition is met,
            # number given in 'flag_values'
            flag_values = flag_params.pop(Params.FLAGVALUES, None)
            if flag_values:
David Schäfer's avatar
David Schäfer committed
                fchunk[varname] = flagNext(flagger, fchunk[varname], flag_values)
David Schäfer's avatar
David Schäfer committed
            data.loc[start_date:end_date] = dchunk
            flags.loc[start_date:end_date] = fchunk
David Schäfer's avatar
David Schäfer committed

        flagger.nextTest()
David Schäfer's avatar
David Schäfer committed
    return data, flags


def prepareMeta(meta, data):
    # NOTE: an option needed to only pass test within an file and deduce
    #       everything else from data
    # no dates given, fall back to the available date range
    if Fields.STARTDATE not in meta:
        meta = meta.assign(**{Fields.STARTDATE: np.nan})
    if Fields.ENDDATE not in meta:
        meta = meta.assign(**{Fields.ENDDATE: np.nan})
    meta = meta.fillna(
        {Fields.ENDDATE: data.index.max(),
         Fields.STARTDATE: data.index.max()})
    meta = meta.dropna(subset=[Fields.VARNAME])
    meta[Fields.STARTDATE] = pd.to_datetime(meta[Fields.STARTDATE])
    meta[Fields.ENDDATE] = pd.to_datetime(meta[Fields.ENDDATE])
    return meta


def readData(fname):
    data = pd.read_csv(
        fname, index_col="Date Time", parse_dates=True,
        na_values=["-9999", "-9999.0"], low_memory=False)
    data.columns = [c.split(" ")[0] for c in data.columns]
    data = data.reindex(
        pd.date_range(data.index.min(), data.index.max(), freq="10min"))
    return data


if __name__ == "__main__":

    datafname = "resources/data.csv"
    metafname = "resources/meta.csv"
    data = readData(datafname)
    meta = prepareMeta(pd.read_csv(metafname), data)
    flagger = PositionalFlagger()
    pdata, pflags = flaggingRunner(meta, flagger, data)