Newer
Older
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from numbers import Number
from typing import Union, Sequence, Any, Optional
from .baseflagger import BaseFlagger
class PositionalFlagger(BaseFlagger):
super().__init__(no_flag=no_flag, flag=critical_flag)
self._flag_pos = 1
self._initial_flag_pos = 1
def nextTest(self):
self._flag_pos += 1
def setFlag(self,
flags: ArrayLike,
flag: Optional[int] = None,
flagpos: Optional[int] = None,
**kwds: Any) -> np.ndarray:
if flag is None:
flag = self.flag
if flagpos is None:
flagpos = self._flag_pos
try:
return self._setFlags(flags, flag, flagpos)
except:
import ipdb; ipdb.set_trace()
def isFlagged(self, flags: pd.DataFrame, flag=None):
maxflags = self._getMaxflags(flags[np.isfinite(flags)])
return (pd.notnull(maxflags) & (maxflags != self.no_flag))
return maxflags == flag
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def _getMaxflags(self, flags: pd.DataFrame,
exclude: Union[int, Sequence] = 0) -> pd.DataFrame:
flagmax = np.max(np.array(flags))
ndigits = int(np.ceil(np.log10(flagmax)))
exclude = set(np.array(exclude).ravel())
out = np.zeros_like(flags)
for pos in range(ndigits):
if pos not in exclude:
out = np.maximum(out, self._getFlags(flags, pos))
return out
def _getFlags(self, flags: pd.DataFrame, pos: int) -> pd.DataFrame:
flags = self._prepFlags(flags)
pos = np.broadcast_to(np.atleast_1d(pos), flags.shape)
ndigits = np.floor(np.log10(flags)).astype(np.int)
idx = np.where(ndigits >= pos)
out = np.zeros_like(flags)
out[idx] = flags[idx] // 10**(ndigits[idx]-pos[idx]) % 10
return out
def _prepFlags(self, flags: pd.DataFrame) -> pd.DataFrame:
out = numpyfy(flags)
return out
def _setFlags(self, flags: pd.DataFrame,
values: Union[pd.DataFrame, int], pos: int) -> pd.DataFrame:
flags, pos, values = broadcastMany(flags, pos, values)
out = flags.astype(np.float64)
# right-pad 'flags' with zeros, to assure the
# desired flag position is available
ndigits = np.floor(np.log10(out)).astype(np.int)
idx = (ndigits < pos)
out[idx] *= 10**(pos[idx]-ndigits[idx])
ndigits = np.log10(out).astype(np.int)
out[idx] += 10**(ndigits[idx]-pos[idx]) * values[idx]
return out.astype(np.int64)