Newer
Older
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import pytest
import numpy as np
from saqc.funcs.functions import (
flagRange,
flagSesonalRange,
forceFlags,
clearFlags,
flagIsolated,
from test.common import initData, TESTFLAGGER
import pandas as pd
import dios
return initData(cols=1, start_date="2016-01-01", end_date="2018-12-31", freq="1D")
@pytest.fixture
def field(data):
return data.columns[0]
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_flagRange(data, field, flagger):
flagger = flagger.initFlags(data)
data, flagger = flagRange(data, field, flagger, min=min, max=max)
flagged = flagger.isFlagged(field)
expected = (data[field] < min) | (data[field] > max)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("method", ['wavelet', 'dtw'])
@pytest.mark.parametrize("pattern", [pytest.lazy_fixture("course_pattern_1"),
pytest.lazy_fixture("course_pattern_2"),] ,)
# pytest.lazy_fixture("course_3"),
# pytest.lazy_fixture("course_4"), ],
# )
def test_flagPattern(course_test, flagger, method, pattern):
pattern_data, dict_pattern = pattern()
# testing the same pattern sampled at different frequencies
if pattern_data.columns == "pattern1":
test_data, *_ = course_test(freq="10 min")
test_data['pattern_data'] = pattern_data.to_df()
flagger = flagger.initFlags(test_data)
data, flagger = flagPattern(test_data, "data", flagger, reference_field="pattern_data", partition_freq="1 H", method=method)
assert flagger.isFlagged("data")[dict_pattern["pattern_1"]].all()
if pattern_data.columns == "pattern2":
test_data, *_ = course_test(freq="1 H")
test_data['pattern_data'] = pattern_data.to_df()
flagger = flagger.initFlags(test_data)
data, flagger = flagPattern(test_data, "data", flagger, reference_field="pattern_data", partition_freq="days", method=method)
assert flagger.isFlagged("data")[dict_pattern["pattern_2"]].all()
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_flagSesonalRange(data, field, flagger):
# prepare
({"min": 1, "max": 100, "startmonth": 7, "startday": 1, "endmonth": 8, "endday": 31,}, 31 * 2 * nyears // 2,),
({"min": 1, "max": 100, "startmonth": 12, "startday": 16, "endmonth": 1, "endday": 15,}, 31 * nyears // 2 + 1,),
]
for test, expected in tests:
flagger = flagger.initFlags(data)
data, flagger = flagSesonalRange(data, field, flagger, **test)
flagged = flagger.isFlagged(field)
assert flagged.sum() == expected
@pytest.mark.parametrize("flagger", TESTFLAGGER)
flagger = flagger.initFlags(data)
flags_orig = flagger.getFlags()
flags_set = flagger.setFlags(field, flag=flagger.BAD).getFlags()
_, flagger = clearFlags(data, field, flagger)
flags_cleared = flagger.getFlags()
assert (flags_orig != flags_set).all(None)
assert (flags_orig == flags_cleared).all(None)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
flagger = flagger.initFlags(data)
flags_orig = flagger.setFlags(field).getFlags(field)
_, flagger = forceFlags(data, field, flagger, flag=flagger.GOOD)
flags_forced = flagger.getFlags(field)
assert np.all(flags_orig != flags_forced)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_flagIsolated(data, flagger):
field = data.columns[0]
data.iloc[1:3, 0] = np.nan
data.iloc[4:5, 0] = np.nan
data.iloc[11:13, 0] = np.nan
data.iloc[15:17, 0] = np.nan
s = data[field].iloc[5:6]
flagger = flagger.setFlags(field, loc=s)
_, flagger_result = flagIsolated(data, field, flagger, group_window="1D", gap_window="2.1D")
assert flagger_result.isFlagged(field)[slice(3, 6, 2)].all()
data, flagger_result = flagIsolated(
data, field, flagger_result, group_window="2D", gap_window="2.1D", continuation_range="1.1D",
assert flagger_result.isFlagged(field)[[3, 5, 13, 14]].all()