Newer
Older
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import pytest
import numpy as np
import pandas as pd
import dios
from saqc.funcs.functions import (
flagRange,
flagSesonalRange,
forceFlags,
clearFlags,
flagIsolated,
flagCrossScoring
from test.common import initData, TESTFLAGGER
return initData(cols=1, start_date="2016-01-01", end_date="2018-12-31", freq="1D")
@pytest.fixture
def field(data):
return data.columns[0]
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_flagRange(data, field, flagger):
flagger = flagger.initFlags(data)
data, flagger = flagRange(data, field, flagger, min=min, max=max)
flagged = flagger.isFlagged(field)
expected = (data[field] < min) | (data[field] > max)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_flagSesonalRange(data, field, flagger):
# prepare
({"min": 1, "max": 100, "startmonth": 7, "startday": 1, "endmonth": 8, "endday": 31,}, 31 * 2 * nyears // 2,),
({"min": 1, "max": 100, "startmonth": 12, "startday": 16, "endmonth": 1, "endday": 15,}, 31 * nyears // 2 + 1,),
]
for test, expected in tests:
flagger = flagger.initFlags(data)
data, flagger = flagSesonalRange(data, field, flagger, **test)
flagged = flagger.isFlagged(field)
assert flagged.sum() == expected
@pytest.mark.parametrize("flagger", TESTFLAGGER)
flagger = flagger.initFlags(data)
flags_orig = flagger.getFlags()
flags_set = flagger.setFlags(field, flag=flagger.BAD).getFlags()
_, flagger = clearFlags(data, field, flagger)
flags_cleared = flagger.getFlags()
assert (flags_orig != flags_set).all(None)
assert (flags_orig == flags_cleared).all(None)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
flagger = flagger.initFlags(data)
flags_orig = flagger.setFlags(field).getFlags(field)
_, flagger = forceFlags(data, field, flagger, flag=flagger.GOOD)
flags_forced = flagger.getFlags(field)
assert np.all(flags_orig != flags_forced)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_flagIsolated(data, flagger):
field = data.columns[0]
data.iloc[1:3, 0] = np.nan
data.iloc[4:5, 0] = np.nan
data.iloc[11:13, 0] = np.nan
data.iloc[15:17, 0] = np.nan
s = data[field].iloc[5:6]
flagger = flagger.setFlags(field, loc=s)
_, flagger_result = flagIsolated(data, field, flagger, group_window="1D", gap_window="2.1D")
assert flagger_result.isFlagged(field)[slice(3, 6, 2)].all()
data, flagger_result = flagIsolated(
data, field, flagger_result, group_window="2D", gap_window="2.1D", continuation_range="1.1D",
assert flagger_result.isFlagged(field)[[3, 5, 13, 14]].all()
@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("dat", [pytest.lazy_fixture("course_2")])
def test_flagCrossScoring(dat, flagger):
data1, characteristics = dat(initial_level=0, final_level=0, out_val=0)
data2, characteristics = dat(initial_level=0, final_level=0, out_val=10)
field = "dummy"
fields = ["data1", "data2"]
s1, s2 = data1.squeeze(), data2.squeeze()
s1 = pd.Series(data=s1.values, index=s1.index)
s2 = pd.Series(data=s2.values, index=s1.index)
data = dios.DictOfSeries([s1, s2], columns=["data1", "data2"])
flagger = flagger.initFlags(data)
_, flagger_result = flagCrossScoring(
data, field, flagger, fields=fields, thresh=3, cross_stat=np.mean
)
for field in fields:
isflagged = flagger_result.isFlagged(field)
assert isflagged[characteristics['raise']].all()