-
Peter Lünenschloß authoredaae82834
test_proc_functions.py 4.67 KiB
#! /usr/bin/env python
# SPDX-FileCopyrightText: 2021 Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
#
# SPDX-License-Identifier: GPL-3.0-or-later
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
# see test/functs/fixtures.py for global fixtures "course_..."
import pytest
import dios
import saqc
from saqc.constants import UNFLAGGED
from saqc.core import SaQC, initFlagsLike
from saqc.lib.ts_operators import linearInterpolation, polynomialInterpolation
from tests.fixtures import char_dict, course_3, course_5
def test_rollingInterpolateMissing(course_5):
data, characteristics = course_5(periods=10, nan_slice=[5, 6])
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
qc = SaQC(data, flags).interpolateByRolling(
field,
3,
func=np.median,
center=True,
min_periods=0,
interpol_flag=UNFLAGGED,
)
assert qc.data[field][characteristics["missing"]].notna().all()
qc = SaQC(data, flags).interpolateByRolling(
field,
3,
func=np.nanmean,
center=False,
min_periods=3,
interpol_flag=UNFLAGGED,
)
assert qc.data[field][characteristics["missing"]].isna().all()
def test_interpolateMissing(course_5):
data, characteristics = course_5(periods=10, nan_slice=[5])
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
qc = SaQC(data, flags)
qc_lin = qc.interpolateInvalid(field, method="linear")
qc_poly = qc.interpolateInvalid(field, method="polynomial")
assert qc_lin.data[field][characteristics["missing"]].notna().all()
assert qc_poly.data[field][characteristics["missing"]].notna().all()
data, characteristics = course_5(periods=10, nan_slice=[5, 6, 7])
qc = SaQC(data, flags)
qc_lin_1 = qc.interpolateInvalid(field, method="linear", limit=2)
qc_lin_2 = qc.interpolateInvalid(field, method="linear", limit=3)
qc_lin_3 = qc.interpolateInvalid(field, method="linear", limit=4)
assert qc_lin_1.data[field][characteristics["missing"]].isna().all()
assert qc_lin_2.data[field][characteristics["missing"]].isna().all()
assert qc_lin_3.data[field][characteristics["missing"]].notna().all()
def test_transform(course_5):
data, characteristics = course_5(periods=10, nan_slice=[5, 6])
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
qc = SaQC(data, flags)
result = qc.transform(field, func=linearInterpolation)
assert result.data[field][characteristics["missing"]].isna().all()
result = qc.transform(field, func=lambda x: linearInterpolation(x, inter_limit=3))
assert result.data[field][characteristics["missing"]].notna().all()
result = qc.transform(
field,
func=lambda x: polynomialInterpolation(x, inter_limit=3, inter_order=3),
)
assert result.data[field][characteristics["missing"]].notna().all()
def test_resample(course_5):
data, _ = course_5(freq="1min", periods=30, nan_slice=[1, 11, 12, 22, 24, 26])
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
qc = SaQC(data, flags).resample(
field,
"10min",
np.mean,
maxna=2,
maxna_group=1,
)
assert ~np.isnan(qc.data[field].iloc[0])
assert np.isnan(qc.data[field].iloc[1])
assert np.isnan(qc.data[field].iloc[2])
def test_interpolateGrid(course_5, course_3):
data, _ = course_5()
data_grid, _ = course_3()
data["grid"] = data_grid.to_df()
flags = initFlagsLike(data)
SaQC(data, flags).interpolateIndex(
"data", "1h", "time", grid_field="grid", limit=10
)
@pytest.mark.slow
def test_offsetCorrecture():
data = pd.Series(0, index=pd.date_range("2000", freq="1d", periods=100), name="dat")
data.iloc[30:40] = -100
data.iloc[70:80] = 100
flags = initFlagsLike(data)
qc = SaQC(data, flags).correctOffset("dat", 40, 20, "3d", 1)
assert (qc.data == 0).all()[0]
# GL-333
def test_resampleSingleEmptySeries():
qc = saqc.SaQC(pd.DataFrame(1, columns=["a"], index=pd.DatetimeIndex([])))
qc.resample("a", freq="1d")
@pytest.mark.parametrize(
"data",
[
pd.Series(
[
np.random.normal(loc=1 + k * 0.1, scale=3 * (1 - (k * 0.001)))
for k in range(100)
],
index=pd.date_range("2000", freq="1D", periods=100),
name="data",
)
],
)
def test_assignZScore(data):
qc = saqc.SaQC(data)
qc = qc.assignZScore("data", window="20D")
mean_res = qc.data["data"].mean()
std_res = qc.data["data"].std()
assert -0.1 < mean_res < 0.1
assert 0.9 < std_res < 1.1