-
David Schäfer authored
fixed constants detection. -there was the famous `ramp-up` error, because of the laggy implementation of pd.rolling ;)
45444a7e
test_rolling.py 6.37 KiB
import pytest
from saqc.lib.rolling import customRoller, Rolling
import pandas as pd
import numpy as np
FUNCTS = ['count', 'sum', 'mean', 'median', 'var', 'std', 'min', 'max', 'corr', 'cov', 'skew', 'kurt', ]
OTHA = ['apply',
'aggregate', # needs param func eg. func='min'
'quantile', # needs param quantile=0.5 (0<=q<=1)
]
@pytest.fixture
def data():
return data_()
def data_():
s1 = pd.Series(1., index=pd.date_range("1999/12", periods=12, freq='1M') + pd.Timedelta('1d'))
s2 = pd.Series(1., index=pd.date_range('2000/05/15', periods=8, freq='1d'))
s = pd.concat([s1, s2]).sort_index()
s.name = 's'
s[15] = np.nan
return s
len_s = len(data_())
def make_num_kws():
l = []
n = list(range(len_s))
for window in n:
mp = list(range(window))
for min_periods in [None] + mp:
if min_periods is not None and min_periods > window:
continue
for center in [False, True]:
l.append(dict(window=window, min_periods=min_periods, center=center))
return l
def make_dt_kws():
l = []
n = [0, 1, 2, 10, 32, 70, 120]
mp = list(range(len_s))
for closed in ['right', 'both', 'neither', 'left']:
for window in n:
for min_periods in [None] + mp:
l.append(dict(window=f'{window}d', min_periods=min_periods, closed=closed))
return l
def check_series(result, expected):
if not (result.isna() == expected.isna()).all():
return False
result = result.dropna()
expected = expected.dropna()
if not (result == expected).all():
return False
return True
def print_diff(s, result, expected):
df = pd.DataFrame()
df['s'] = s
df['exp'] = expected
df['res'] = result
print(df)
def call_rolling_function(roller, func):
if isinstance(func, str):
return getattr(roller, func)()
else:
return getattr(roller, 'apply')(func)
@pytest.mark.parametrize("kws", make_dt_kws(), ids=lambda x: str(x))
@pytest.mark.parametrize("func", FUNCTS)
def test_pandas_conform_dt(data, kws, func):
s = data
try:
expR = s.rolling(**kws)
expected = call_rolling_function(expR, func)
except Exception as e0:
# pandas failed, so we should also fail
try:
resR = customRoller(s, **kws)
result = call_rolling_function(resR, func)
except Exception as e1:
assert type(e0) == type(e1)
return
assert False, 'pandas faild, but we succeed'
resR = customRoller(s, **kws)
result = call_rolling_function(resR, func)
success = check_series(result, expected)
if success:
return
print_diff(s, result, expected)
assert False
@pytest.mark.parametrize("kws", make_num_kws(), ids=lambda x: str(x))
@pytest.mark.parametrize("func", FUNCTS)
def test_pandas_conform_num(data, kws, func):
s = data
try:
expR = s.rolling(**kws)
expected = call_rolling_function(expR, func)
except Exception as e0:
# pandas failed, so we should also fail
try:
resR = customRoller(s, **kws)
result = call_rolling_function(resR, func)
except Exception as e1:
assert type(e0) == type(e1)
return
assert False, 'pandas faild, but we succeed'
resR = customRoller(s, **kws)
result = call_rolling_function(resR, func)
success = check_series(result, expected)
if success:
return
print_diff(s, result, expected)
assert False
@pytest.mark.parametrize("kws", make_dt_kws(), ids=lambda x: str(x))
@pytest.mark.parametrize("func", FUNCTS)
def test_forward_dt(data, kws, func):
s = data
try:
expR = pd.Series(reversed(s), reversed(s.index)).rolling(**kws)
expected = call_rolling_function(expR, func)[::-1]
except Exception as e0:
# pandas failed, so we should also fail
try:
resR = customRoller(s, forward=True, **kws)
result = call_rolling_function(resR, func)
except Exception as e1:
assert type(e0) == type(e1)
return
assert False, 'pandas faild, but we succeed'
resR = customRoller(s, forward=True, **kws)
result = call_rolling_function(resR, func)
success = check_series(result, expected)
if success:
return
print_diff(s, result, expected)
assert False
@pytest.mark.parametrize("kws", make_num_kws(), ids=lambda x: str(x))
@pytest.mark.parametrize("func", FUNCTS)
def test_forward_num(data, kws, func):
s = data
try:
expR = pd.Series(reversed(s), reversed(s.index)).rolling(**kws)
expected = call_rolling_function(expR, func)[::-1]
except Exception as e0:
# pandas failed, so we should also fail
try:
resR = customRoller(s, forward=True, **kws)
result = call_rolling_function(resR, func)
except Exception as e1:
assert type(e0) == type(e1)
return
assert False, 'pandas faild, but we succeed'
resR = customRoller(s, forward=True, **kws)
result = call_rolling_function(resR, func)
success = check_series(result, expected)
if success:
return
print_diff(s, result, expected)
assert False
def dt_center_kws():
l = []
for window in range(2, 10, 2):
for min_periods in range(1, window + 1):
l.append(dict(window=window, min_periods=min_periods))
return l
@pytest.mark.parametrize("kws", dt_center_kws(), ids=lambda x: str(x))
def test_centering_w_dtindex(kws):
print(kws)
s = pd.Series(0., index=pd.date_range("2000", periods=10, freq='1H'))
s[4:7] = 1
w = kws.pop('window')
mp = kws.pop('min_periods')
pd_kw = dict(window=w, center=True, min_periods=mp)
our_kw = dict(window=f'{w}h', center=True, closed='both', min_periods=mp)
expected = s.rolling(**pd_kw).sum()
result = customRoller(s, **our_kw).sum()
success = check_series(result, expected)
if not success:
print_diff(s, result, expected)
assert False
w -= 1
mp -= 1
pd_kw = dict(window=w, center=True, min_periods=mp)
our_kw = dict(window=f'{w}h', center=True, closed='neither', min_periods=mp)
expected = s.rolling(**pd_kw).sum()
result = customRoller(s, **our_kw).sum()
success = check_series(result, expected)
if not success:
print_diff(s, result, expected)
assert False