-
David Schäfer authoredea32338d
lib.py 4.87 KiB
#!/usr/bin/env python
import numbers
import dios
import numpy as np
import pandas as pd
from typing import get_type_hints
from contextlib import contextmanager
from hypothesis.strategies import (
lists,
sampled_from,
composite,
from_regex,
sampled_from,
datetimes,
integers,
register_type_strategy,
from_type,
)
from hypothesis.extra.numpy import arrays, from_dtype
from hypothesis.strategies._internal.types import _global_type_lookup
from saqc.constants import *
from saqc.core.register import FUNC_MAP
from saqc.core.lib import SaQCFunction
from saqc.lib.types import FreqString, ColumnName, IntegerWindow
from saqc.core import initFlagsLike, Flags
MAX_EXAMPLES = 50
# MAX_EXAMPLES = 100000
@composite
def dioses(draw, min_cols=1):
"""
initialize data according to the current restrictions
"""
# NOTE:
# The following restriction showed up and should be enforced during init:
# - Column names need to satisify the following regex: [A-Za-z0-9_-]+
# - DatetimeIndex needs to be sorted
# - Integer values larger than 2**53 lead to numerical instabilities during
# the integer->float->integer type conversion in _maskData/_unmaskData.
cols = draw(lists(columnNames(), unique=True, min_size=min_cols))
columns = {c: draw(dataSeries(min_size=3)) for c in cols}
return dios.DictOfSeries(columns)
@composite
def dataSeries(
draw, min_size=0, max_size=100, dtypes=("float32", "float64", "int32", "int64")
):
if np.isscalar(dtypes):
dtypes = (dtypes,)
dtype = np.dtype(draw(sampled_from(dtypes)))
if issubclass(dtype.type, numbers.Integral):
info = np.iinfo(dtype)
elif issubclass(dtype.type, numbers.Real):
info = np.finfo(dtype)
else:
raise ValueError("only numerical dtypes are supported")
# we don't want to fail just because of overflows
elements = from_dtype(dtype, min_value=info.min + 1, max_value=info.max - 1)
index = draw(daterangeIndexes(min_size=min_size, max_size=max_size))
values = draw(arrays(dtype=dtype, elements=elements, shape=len(index)))
return pd.Series(data=values, index=index)
@composite
def columnNames(draw):
return draw(from_regex(r"[A-Za-z0-9_-]+", fullmatch=True))
@composite
def flagses(draw, data):
"""
initialize a flags and set some flags
"""
flags = initFlagsLike(data)
for col, srs in data.items():
loc_st = lists(
sampled_from(sorted(srs.index)), unique=True, max_size=len(srs) - 1
)
flags[draw(loc_st), col] = BAD
return flags
@composite
def functions(draw, module: str = None):
samples = tuple(FUNC_MAP.values())
if module:
samples = tuple(f for f in samples if f.name.startswith(module))
# samples = [FUNC_MAP["drift.correctExponentialDrift"]]
return draw(sampled_from(samples))
@composite
def daterangeIndexes(draw, min_size=0, max_size=100):
min_date = pd.Timestamp("1900-01-01").to_pydatetime()
max_date = pd.Timestamp("2099-12-31").to_pydatetime()
start = draw(datetimes(min_value=min_date, max_value=max_date))
periods = draw(integers(min_value=min_size, max_value=max_size))
freq = draw(sampled_from(["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]))
return pd.date_range(start, periods=periods, freq=freq)
@composite
def frequencyStrings(draw, _):
freq = draw(sampled_from(["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]))
mult = draw(integers(min_value=1, max_value=10))
value = f"{mult}{freq}"
return value
@composite
def dataFieldFlags(draw):
data = draw(dioses())
field = draw(sampled_from(sorted(data.columns)))
flags = draw(flagses(data))
return data, field, flags
@composite
def functionCalls(draw, module: str = None):
func = draw(functions(module))
kwargs = draw(functionKwargs(func))
return func, kwargs
@contextmanager
def applyStrategies(strategies: dict):
for dtype, strategy in strategies.items():
register_type_strategy(dtype, strategy)
yield
for dtype in strategies.keys():
del _global_type_lookup[dtype]
@composite
def functionKwargs(draw, func: SaQCFunction):
data = draw(dioses())
field = draw(sampled_from(sorted(data.columns)))
kwargs = {"data": data, "field": field, "flags": draw(flagses(data))}
i64 = np.iinfo("int64")
strategies = {
FreqString: frequencyStrings,
ColumnName: lambda _: sampled_from(
sorted(c for c in data.columns if c != field)
),
IntegerWindow: lambda _: integers(min_value=1, max_value=len(data[field]) - 1),
int: lambda _: integers(min_value=i64.min + 1, max_value=i64.max - 1),
}
with applyStrategies(strategies):
for k, v in get_type_hints(func.func).items():
if k not in {"data", "field", "flags", "return"}:
value = draw(from_type(v))
kwargs[k] = value
return kwargs