-
David Schäfer authoredd26f42f6
core.py 5.52 KiB
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from math import ceil
import numpy as np
import pandas as pd
from config import Fields, FUNCMAP, Params, NODATA
from dsl import evalCondition, parseFlag
from flagger import PositionalFlagger
from lib.types import ArrayLike
def _inferFrequency(data):
return pd.tseries.frequencies.to_offset(pd.infer_freq(data.index))
def _periodToTicks(period, freq):
return int(ceil(pd.to_timedelta(period)/pd.to_timedelta(freq)))
def _flagNext(to_flag: ArrayLike, n: int) -> ArrayLike:
"""
to_flag: Union[np.ndarray[bool], pd.Series[bool]]
"""
idx = np.nonzero(to_flag)[0]
for nn in range(n + 1):
nn_idx = np.clip(idx + nn, a_min=None, a_max=len(to_flag) - 1)
to_flag[nn_idx] = True
return to_flag
def flagGeneric(data, flags, field, flagger, flag_params):
to_flag = evalCondition(
flag_params[Params.FUNC],
data, flags, field, nodata=NODATA)
# flag a timespan after the condition is met,
# duration given in 'flag_period'
flag_period = flag_params.pop(Params.FLAGPERIOD, None)
if flag_period:
flag_params[Params.FLAGVALUES] = _periodToTicks(flag_period,
data.index.freq)
# flag a certain amount of values after condition is met,
# number given in 'flag_values'
flag_values = flag_params.pop(Params.FLAGVALUES, None)
if flag_values:
to_flag = _flagNext(to_flag, flag_values)
# flag to set might be given in 'flag'
fchunk = flagger.setFlag(flags=flags.loc[to_flag, field], **flag_params)
flags.loc[to_flag, field] = fchunk
return flags
def flaggingRunner(meta, flagger, data, flags=None):
# TODO: if flags is not None, check its structure
if flags is None:
flags = flagger.emptyFlags(data)
else:
if not all(flags.columns == flagger.emptyFlags(data.iloc[0]).columns):
raise TypeError("structure of given flag does not "
"correspond to flagger requirements")
# NOTE:
# we need an index frequency in order to calculate ticks
# from given periods further down the road
data.index.freq = _inferFrequency(data)
assert data.index.freq, "no frequency deducable from timeseries"
# the required meta data columns
fields = [Fields.VARNAME, Fields.STARTDATE, Fields.ENDDATE]
# NOTE:
# the outer loop runs over the flag tests, the inner one over the
# variables. Switching the loop order would complicate the
# reference to flags from other variables within the dataset
flag_fields = meta.columns.to_series().filter(regex=Fields.FLAGS)
for flag_pos, flag_field in enumerate(flag_fields):
# NOTE: just an optimization
if meta[flag_field].dropna().empty:
continue
for _, configrow in meta.iterrows():
flag_test = configrow[flag_field]
if pd.isnull(flag_test):
continue
varname, start_date, end_date = configrow[fields]
if varname not in data:
continue
dchunk = data.loc[start_date:end_date]
if dchunk.empty:
continue
# NOTE:
# within the activation period of a variable, the flag will
# be initialized if necessary
fchunk = (flags
.loc[start_date:end_date]
.fillna({varname: flagger.no_flag}))
flag_params = parseFlag(flag_test)
flag_name = flag_params[Params.NAME]
# NOTE: higher flags might be overwritten by lower ones
func = FUNCMAP.get(flag_name, None)
if func:
dchunk, fchunk = func(dchunk, fchunk, varname,
flagger, **flag_params)
elif flag_name == "generic":
fchunk = flagGeneric(dchunk, fchunk, varname,
flagger, flag_params)
else:
raise RuntimeError(
"malformed flag field ('{:}') for variable: {:}"
.format(flag_test, varname))
flagger.nextTest()
data.loc[start_date:end_date] = dchunk
flags.loc[start_date:end_date] = fchunk
return data, flags
def prepareMeta(meta, data):
# NOTE: an option needed to only pass test within an file and deduce
# everything else from data
# no dates given, fall back to the available date range
if Fields.STARTDATE not in meta:
meta = meta.assign(**{Fields.STARTDATE: np.nan})
if Fields.ENDDATE not in meta:
meta = meta.assign(**{Fields.ENDDATE: np.nan})
meta = meta.fillna(
{Fields.ENDDATE: data.index.max(),
Fields.STARTDATE: data.index.max()})
meta = meta.dropna(subset=[Fields.VARNAME])
meta[Fields.STARTDATE] = pd.to_datetime(meta[Fields.STARTDATE])
meta[Fields.ENDDATE] = pd.to_datetime(meta[Fields.ENDDATE])
return meta
def readData(fname):
data = pd.read_csv(
fname, index_col="Date Time", parse_dates=True,
na_values=["-9999", "-9999.0"], low_memory=False)
data.columns = [c.split(" ")[0] for c in data.columns]
data = data.reindex(
pd.date_range(data.index.min(), data.index.max(), freq="10min"))
return data
if __name__ == "__main__":
datafname = "resources/data.csv"
metafname = "resources/meta.csv"
data = readData(datafname)
meta = prepareMeta(pd.read_csv(metafname), data)
flagger = PositionalFlagger()
pdata, pflags = flaggingRunner(meta, flagger, data)