-
Peter Lünenschloß authoredd92e0952
test_harm_funcs.py 13.17 KiB
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import pytest
import numpy as np
import pandas as pd
from dios import dios
from test.common import TESTFLAGGER, initData
from saqc.funcs.harm_functions import (
harm_harmonize,
harm_deharmonize,
_interpolateGrid,
_insertGrid,
_outsortCrap,
harm_linear2Grid,
harm_interpolate2Grid,
harm_shift2Grid,
harm_aggregate2Grid
)
RESHAPERS = ["nshift", "fshift", "bshift"]
COFLAGGING = [False, True]
SETSHIFTCOMMENT = [False, True]
INTERPOLATIONS = ["fshift", "bshift", "nshift", "nagg", "bagg"]
INTERPOLATIONS2 = ["fagg", "time", "polynomial"]
FREQS = ["15min", "30min"]
@pytest.fixture
def data():
index = pd.date_range(start="1.1.2011 00:00:00", end="1.1.2011 01:00:00", freq="15min")
index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 29, 0))
index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 28, 0))
index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 32, 0))
index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 31, 0))
index = index.insert(0, pd.Timestamp(2010, 12, 31, 23, 57, 0))
index = index.drop(pd.Timestamp("2011-01-01 00:30:00"))
dat = pd.Series(np.linspace(-50, 50, index.size), index=index, name="data")
# good to have some nan
dat[-3] = np.nan
data = dios.DictOfSeries(dat)
return data
@pytest.fixture
def multi_data():
index = pd.date_range(start="1.1.2011 00:00:00", end="1.1.2011 01:00:00", freq="15min")
index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 29, 0))
index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 28, 0))
index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 32, 0))
index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 31, 0))
index = index.insert(0, pd.Timestamp(2010, 12, 31, 23, 57, 0))
index = index.drop(pd.Timestamp("2011-01-01 00:30:00"))
dat = pd.Series(np.linspace(-50, 50, index.size), index=index, name="data")
# good to have some nan
dat[-3] = np.nan
data = dat.to_frame()
data.index = data.index.shift(1, "2min")
dat2 = data.copy()
dat2.index = dat2.index.shift(1, "17min")
dat2.rename(columns={"data": "data2"}, inplace=True)
dat3 = data.copy()
dat3.index = dat3.index.shift(1, "1h")
dat3.rename(columns={"data": "data3"}, inplace=True)
dat3.drop(dat3.index[2:-2], inplace=True)
# merge
data = pd.merge(data, dat2, how="outer", left_index=True, right_index=True)
data = pd.merge(data, dat3, how="outer", left_index=True, right_index=True)
return dios.DictOfSeries(data)
@pytest.mark.parametrize("method", INTERPOLATIONS2)
def test_gridInterpolation(data, method):
freq = "15min"
data = data.squeeze()
data = (data * np.sin(data)).append(data.shift(1, "2h")).shift(1, "3s")
kwds = dict(agg_method="sum", downcast_interpolation=True)
# we are just testing if the interpolation gets passed to the series without causing an error:
_interpolateGrid(data, freq, method, order=1, **kwds)
if method == "polynomial":
_interpolateGrid(data, freq, method, order=2, **kwds)
_interpolateGrid(data, freq, method, order=10, **kwds)
data = _insertGrid(data, freq)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_outsortCrap(data, flagger):
field = data.columns[0]
s = data[field]
flagger = flagger.initFlags(data)
drop_index = s.index[5:7]
flagger = flagger.setFlags(field, loc=drop_index)
res, *_ = _outsortCrap(s, field, flagger, drop_flags=flagger.BAD)
assert drop_index.difference(res.index).equals(drop_index)
flagger = flagger.setFlags(field, loc=s.iloc[0:1], flag=flagger.GOOD)
drop_index = drop_index.insert(-1, s.index[0])
to_drop = [flagger.BAD, flagger.GOOD]
res, *_ = _outsortCrap(s, field, flagger, drop_flags=to_drop)
assert drop_index.sort_values().difference(res.index).equals(drop_index.sort_values())
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_heapConsistency(data, flagger):
freq = "15Min"
# harmonize `other_data` and prefill the HEAP
other_data = initData(3)
other_flagger = flagger.initFlags(other_data)
harm_harmonize(other_data, other_data.columns[0], other_flagger, freq, "time", "nshift")
# harmonize and deharmonize `data`
# -> we want both harmonizations (`data` and `other_data`) to not interfere
flagger = flagger.initFlags(data)
data_harm, flagger_harm = harm_harmonize(data, "data", flagger, freq, "time", "nshift")
data_deharm, flagger_deharm = harm_deharmonize(data_harm, "data", flagger_harm)
assert np.all(data.to_df().dropna() == data_deharm.to_df().dropna())
@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("reshaper", RESHAPERS)
@pytest.mark.parametrize("co_flagging", COFLAGGING)
def test_harmSingleVarIntermediateFlagging(data, flagger, reshaper, co_flagging):
flagger = flagger.initFlags(data)
# make pre harm copies:
pre_data = data.copy()
pre_flags = flagger.getFlags()
freq = "15min"
assert len(data.columns) == 1
field = data.columns[0]
# harmonize data:
data, flagger = harm_harmonize(data, "data", flagger, freq, "time", reshaper)
# flag something bad
flagger = flagger.setFlags("data", loc=data[field].index[3:4])
data, flagger = harm_deharmonize(data, "data", flagger, co_flagging=co_flagging)
d = data[field]
if reshaper == "nshift":
if co_flagging is True:
assert flagger.isFlagged(loc=d.index[3:7]).squeeze().all()
assert (~flagger.isFlagged(loc=d.index[0:3]).squeeze()).all()
assert (~flagger.isFlagged(loc=d.index[7:]).squeeze()).all()
if co_flagging is False:
assert (
flagger.isFlagged().squeeze() == [False, False, False, False, True, False, False, False, False]
).all()
if reshaper == "bshift":
if co_flagging is True:
assert flagger.isFlagged(loc=d.index[5:7]).squeeze().all()
assert (~flagger.isFlagged(loc=d.index[0:5]).squeeze()).all()
assert (~flagger.isFlagged(loc=d.index[7:]).squeeze()).all()
if co_flagging is False:
assert (
flagger.isFlagged().squeeze() == [False, False, False, False, False, True, False, False, False]
).all()
if reshaper == "fshift":
if co_flagging is True:
assert flagger.isFlagged(loc=d.index[3:5]).squeeze().all()
assert (~flagger.isFlagged(loc=d.index[0:3]).squeeze()).all()
assert (~flagger.isFlagged(loc=d.index[5:]).squeeze()).all()
if co_flagging is False:
assert (
flagger.isFlagged().squeeze() == [False, False, False, False, True, False, False, False, False]
).all()
flags = flagger.getFlags()
assert pre_data[field].equals(data[field])
assert len(data[field]) == len(flags[field])
assert (pre_flags[field].index == flags[field].index).all()
@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("interpolation", INTERPOLATIONS)
@pytest.mark.parametrize("freq", FREQS)
def test_harmSingleVarInterpolations(data, flagger, interpolation, freq):
flagger = flagger.initFlags(data)
flags = flagger.getFlags()
# make pre harm copies:
pre_data = data.copy()
pre_flags = flags.copy()
assert len(data.columns) == 1
field = data.columns[0]
harm_start = data[field].index[0].floor(freq=freq)
harm_end = data[field].index[-1].ceil(freq=freq)
test_index = pd.date_range(start=harm_start, end=harm_end, freq=freq)
data, flagger = harm_harmonize(
data, "data", flagger, freq, interpolation, "fshift", reshape_shift_comment=False, inter_agg="sum",
)
if interpolation == "fshift":
if freq == "15min":
exp = pd.Series([np.nan, -37.5, -25.0, 0.0, 37.5, 50.0], index=test_index)
assert data[field].equals(exp)
if freq == "30min":
exp = pd.Series([np.nan, -37.5, 0.0, 50.0], index=test_index)
assert data[field].equals(exp)
if interpolation == "bshift":
if freq == "15min":
exp = pd.Series([-50.0, -37.5, -25.0, 12.5, 37.5, 50.0], index=test_index)
assert data[field].equals(exp)
if freq == "30min":
exp = pd.Series([-50.0, -37.5, 12.5, 50.0], index=test_index)
assert data[field].equals(exp)
if interpolation == "nshift":
if freq == "15min":
exp = pd.Series([np.nan, -37.5, -25.0, 12.5, 37.5, 50.0], index=test_index)
assert data[field].equals(exp)
if freq == "30min":
exp = pd.Series([np.nan, -37.5, 12.5, 50.0], index=test_index)
assert data[field].equals(exp)
if interpolation == "nagg":
if freq == "15min":
exp = pd.Series([-87.5, -25.0, 0.0, 37.5, 50.0], index=test_index[1:])
assert data[field].equals(exp)
if freq == "30min":
exp = pd.Series([-87.5, -25.0, 87.5], index=test_index[1:])
assert data[field].equals(exp)
if interpolation == "bagg":
if freq == "15min":
exp = pd.Series([-50.0, -37.5, -37.5, 12.5, 37.5, 50.0], index=test_index)
assert data[field].equals(exp)
if freq == "30min":
exp = pd.Series([-50.0, -75.0, 50.0, 50.0], index=test_index)
assert data[field].equals(exp)
data, flagger = harm_deharmonize(data, "data", flagger, co_flagging=True)
# data, flagger = harm_deharmonize(data, "data", flagger, co_flagging=True)
flags = flagger.getFlags()
assert pre_data[field].equals(data[field])
assert len(data[field]) == len(flags[field])
assert (pre_flags[field].index == flags[field].index).all()
@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("shift_comment", SETSHIFTCOMMENT)
def test_multivariatHarmonization(multi_data, flagger, shift_comment):
flagger = flagger.initFlags(multi_data)
flags = flagger.getFlags()
# for comparison
pre_data = multi_data.copy()
pre_flags = flags.copy()
freq = "15min"
# harm:
multi_data, flagger = harm_harmonize(
multi_data, "data", flagger, freq, "time", "nshift", reshape_shift_comment=shift_comment,
)
multi_data, flagger = harm_harmonize(
multi_data,
"data2",
flagger,
freq,
"bagg",
"bshift",
inter_agg="sum",
reshape_agg="max",
reshape_shift_comment=shift_comment,
)
multi_data, flagger = harm_harmonize(
multi_data, "data3", flagger, freq, "fshift", "fshift", reshape_shift_comment=shift_comment,
)
for c in multi_data.columns:
harm_start = multi_data[c].index[0].floor(freq=freq)
harm_end = multi_data[c].index[-1].ceil(freq=freq)
assert pd.Timedelta(pd.infer_freq(multi_data[c].index)) == pd.Timedelta(freq)
multi_data, flagger = harm_deharmonize(multi_data, "data3", flagger, co_flagging=False)
multi_data, flagger = harm_deharmonize(multi_data, "data2", flagger, co_flagging=True)
multi_data, flagger = harm_deharmonize(multi_data, "data", flagger, co_flagging=True)
for c in multi_data.columns:
flags = flagger.getFlags()
assert pre_data[c].equals(multi_data[pre_data.columns.to_list()][c])
assert len(multi_data[c]) == len(flags[c])
assert (pre_flags[c].index == flags[c].index).all()
@pytest.mark.parametrize("method", INTERPOLATIONS2)
def test_gridInterpolation(data, method):
freq = "15min"
data = data.squeeze()
data = (data * np.sin(data)).append(data.shift(1, "2h")).shift(1, "3s")
# we are just testing if the interpolation gets passed to the series without causing an error:
_interpolateGrid(data, freq, method, order=1, agg_method="sum", downcast_interpolation=True)
if method == "polynomial":
_interpolateGrid(data, freq, method, order=2, agg_method="sum", downcast_interpolation=True)
_interpolateGrid(data, freq, method, order=10, agg_method="sum", downcast_interpolation=True)
data = _insertGrid(data, freq)
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_outsortCrap(data, flagger):
field = data.columns[0]
flagger = flagger.initFlags(data)
flagger = flagger.setFlags(field, loc=data[field].index[5:7])
drop_index = data[field].index[5:7]
d, *_ = _outsortCrap(data[field], field, flagger, drop_flags=flagger.BAD)
assert drop_index.difference(d.index).equals(drop_index)
flagger = flagger.setFlags(field, loc=data[field].index[0:1], flag=flagger.GOOD)
drop_index = drop_index.insert(-1, data[field].index[0])
d, *_ = _outsortCrap(data[field], field, flagger, drop_flags=[flagger.BAD, flagger.GOOD],)
assert drop_index.sort_values().difference(d.index).equals(drop_index.sort_values())
@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_wrapper(data, flagger):
# we are only testing, whether the wrappers do pass processing:
field = data.columns[0]
freq = "15min"
flagger = flagger.initFlags(data)
harm_linear2Grid(data, field, flagger, freq, method="nagg", func="max", drop_flags=None)
harm_aggregate2Grid(data, field, flagger, freq, value_func="sum", flag_func="max", method="nagg", drop_flags=None)
harm_shift2Grid(data, field, flagger, freq, method="nshift", drop_flags=None)
harm_interpolate2Grid(data, field, flagger, freq, method="spline")