Skip to content
Snippets Groups Projects
test_harm_funcs.py 11.41 KiB
#! /usr/bin/env python
# -*- coding: utf-8 -*-

import pytest

import numpy as np
import pandas as pd

from test.common import TESTFLAGGER

from saqc.funcs.harm_functions import (
    harmonize,
    deharmonize,
    _interpolate,
    _interpolateGrid,
    _insertGrid,
    _outsortCrap,
)


TESTFLAGGER = TESTFLAGGER[:-1]


RESHAPERS = ["nearest_shift", "fshift", "bshift"]


COFLAGGING = [False, True]


SETSHIFTCOMMENT = [False, True]


INTERPOLATIONS = ["fshift", "bshift", "nearest_shift", "nearest_agg", "bagg"]

INTERPOLATIONS2 = ["fagg", "time", "polynomial"]


FREQS = ["15min", "30min"]


@pytest.fixture
def data():
    index = pd.date_range(
        start="1.1.2011 00:00:00", end="1.1.2011 01:00:00", freq="15min"
    )
    index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 29, 0))
    index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 28, 0))
    index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 32, 0))
    index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 31, 0))
    index = index.insert(0, pd.Timestamp(2010, 12, 31, 23, 57, 0))
    index = index.drop(pd.Timestamp("2011-01-01 00:30:00"))
    dat = pd.Series(np.linspace(-50, 50, index.size), index=index, name="data")
    # good to have some nan
    dat[-3] = np.nan
    data = dat.to_frame()
    return data


@pytest.fixture
def multi_data():
    index = pd.date_range(
        start="1.1.2011 00:00:00", end="1.1.2011 01:00:00", freq="15min"
    )
    index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 29, 0))
    index = index.insert(2, pd.Timestamp(2011, 1, 1, 0, 28, 0))
    index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 32, 0))
    index = index.insert(5, pd.Timestamp(2011, 1, 1, 0, 31, 0))
    index = index.insert(0, pd.Timestamp(2010, 12, 31, 23, 57, 0))
    index = index.drop(pd.Timestamp("2011-01-01 00:30:00"))
    dat = pd.Series(np.linspace(-50, 50, index.size), index=index, name="data")
    # good to have some nan
    dat[-3] = np.nan
    data = dat.to_frame()
    data.index = data.index.shift(1, "2min")
    dat2 = data.copy()
    dat2.index = dat2.index.shift(1, "17min")
    dat2.rename(columns={"data": "data2"}, inplace=True)
    dat3 = data.copy()
    dat3.index = dat3.index.shift(1, "1h")
    dat3.rename(columns={"data": "data3"}, inplace=True)
    dat3.drop(dat3.index[2:-2], inplace=True)
    # merge
    data = pd.merge(data, dat2, how="outer", left_index=True, right_index=True)
    data = pd.merge(data, dat3, how="outer", left_index=True, right_index=True)
    return data


@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("reshaper", RESHAPERS)
@pytest.mark.parametrize("co_flagging", COFLAGGING)
def test_harmSingleVarIntermediateFlagging(data, flagger, reshaper, co_flagging):

    flagger = flagger.initFlags(data)
    # flags = flagger.initFlags(data)
    # make pre harm copies:
    pre_data = data.copy()
    pre_flags = flagger.getFlags()
    freq = "15min"

    # harmonize data:
    data, flagger = harmonize(data, "data", flagger, freq, "time", reshaper)

    # flag something bad
    flagger = flagger.setFlags("data", loc=data.index[3:4])
    data, flagger = deharmonize(data, "data", flagger, co_flagging=co_flagging)

    if reshaper is "nearest_shift":
        if co_flagging is True:
            assert flagger.isFlagged(loc=data.index[3:7]).squeeze().all()
            assert (~flagger.isFlagged(loc=data.index[0:3]).squeeze()).all()
            assert (~flagger.isFlagged(loc=data.index[7:]).squeeze()).all()
        if co_flagging is False:
            assert (
                flagger.isFlagged().squeeze()
                == [False, False, False, False, True, False, True, False, False]
            ).all()
    if reshaper is "bshift":
        if co_flagging is True:
            assert flagger.isFlagged(loc=data.index[5:7]).squeeze().all()
            assert (~flagger.isFlagged(loc=data.index[0:5]).squeeze()).all()
            assert (~flagger.isFlagged(loc=data.index[7:]).squeeze()).all()
        if co_flagging is False:
            assert (
                flagger.isFlagged().squeeze()
                == [False, False, False, False, False, True, True, False, False]
            ).all()
    if reshaper is "fshift":
        if co_flagging is True:
            assert flagger.isFlagged(loc=data.index[3:5]).squeeze().all()
            assert flagger.isFlagged(loc=data.index[6:7]).squeeze().all()
            assert (~flagger.isFlagged(loc=data.index[0:3]).squeeze()).all()
            assert (~flagger.isFlagged(loc=data.index[7:]).squeeze()).all()
        if co_flagging is False:
            assert (
                flagger.isFlagged().squeeze()
                == [False, False, False, False, True, False, True, False, False]
            ).all()

    flags = flagger.getFlags()
    assert pre_data.equals(data)
    assert len(data) == len(flags)
    assert (pre_flags.index == flags.index).all()


@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("interpolation", INTERPOLATIONS)
@pytest.mark.parametrize("freq", FREQS)
def test_harmSingleVarInterpolations(data, flagger, interpolation, freq):
    flagger = flagger.initFlags(data)
    flags = flagger.getFlags()
    # make pre harm copies:
    pre_data = data.copy()
    pre_flags = flags.copy()

    harm_start = data.index[0].floor(freq=freq)
    harm_end = data.index[-1].ceil(freq=freq)
    test_index = pd.date_range(start=harm_start, end=harm_end, freq=freq)
    data, flagger = harmonize(
        data,
        "data",
        flagger,
        freq,
        interpolation,
        "fshift",
        reshape_shift_comment=False,
        inter_agg=np.sum,
    )

    if interpolation is "fshift":
        if freq == "15min":
            assert data.equals(
                pd.DataFrame(
                    {"data": [np.nan, -37.5, -25.0, 0.0, 37.5, 50.0]}, index=test_index
                )
            )
        if freq == "30min":
            assert data.equals(
                pd.DataFrame({"data": [np.nan, -37.5, 0.0, 50.0]}, index=test_index)
            )
    if interpolation is "bshift":
        if freq == "15min":
            assert data.equals(
                pd.DataFrame(
                    {"data": [-50.0, -37.5, -25.0, 12.5, 37.5, 50.0]}, index=test_index
                )
            )
        if freq == "30min":
            assert data.equals(
                pd.DataFrame({"data": [-50.0, -37.5, 12.5, 50.0]}, index=test_index)
            )
    if interpolation is "nearest_shift":
        if freq == "15min":
            assert data.equals(
                pd.DataFrame(
                    {"data": [np.nan, -37.5, -25.0, 12.5, 37.5, 50.0]}, index=test_index
                )
            )
        if freq == "30min":
            assert data.equals(
                pd.DataFrame({"data": [np.nan, -37.5, 12.5, 50.0]}, index=test_index)
            )
    if interpolation is "nearest_agg":
        if freq == "15min":
            assert data.equals(
                pd.DataFrame(
                    {"data": [np.nan, -87.5, -25.0, 0.0, 37.5, 50.0]}, index=test_index
                )
            )
        if freq == "30min":
            assert data.equals(
                pd.DataFrame({"data": [np.nan, -87.5, -25.0, 87.5]}, index=test_index)
            )
    if interpolation is "bagg":
        if freq == "15min":
            assert data.equals(
                pd.DataFrame(
                    {"data": [-50.0, -37.5, -37.5, 12.5, 37.5, 50.0]}, index=test_index
                )
            )
        if freq == "30min":
            assert data.equals(
                pd.DataFrame({"data": [-50.0, -75.0, 50.0, 50.0]}, index=test_index)
            )

    data, flagger = deharmonize(data, "data", flagger, co_flagging=True)

    data, flagger = deharmonize(data, "data", flagger, co_flagging=True)
    flags = flagger.getFlags()

    assert pre_data.equals(data)
    assert len(data) == len(flags)
    assert (pre_flags.index == flags.index).all()


@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("shift_comment", SETSHIFTCOMMENT)
def test_multivariatHarmonization(multi_data, flagger, shift_comment):
    flagger = flagger.initFlags(multi_data)
    flags = flagger.getFlags()
    # for comparison
    pre_data = multi_data.copy()
    pre_flags = flags.copy()
    freq = "15min"

    harm_start = multi_data.index[0].floor(freq=freq)
    harm_end = multi_data.index[-1].ceil(freq=freq)
    test_index = pd.date_range(start=harm_start, end=harm_end, freq=freq)
    # harm:
    multi_data, flagger = harmonize(
        multi_data,
        "data",
        flagger,
        freq,
        "time",
        "nearest_shift",
        reshape_shift_comment=shift_comment,
    )

    multi_data, flagger = harmonize(
        multi_data,
        "data2",
        flagger,
        freq,
        "bagg",
        "bshift",
        inter_agg=sum,
        reshape_agg=max,
        reshape_shift_comment=shift_comment,
    )

    multi_data, flagger = harmonize(
        multi_data,
        "data3",
        flagger,
        freq,
        "fshift",
        "fshift",
        reshape_shift_comment=shift_comment,
    )
    assert multi_data.index.equals(test_index)
    assert pd.Timedelta(pd.infer_freq(multi_data.index)) == pd.Timedelta(freq)

    multi_data, flagger = deharmonize(multi_data, "data3", flagger, co_flagging=False)
    multi_data, flagger = deharmonize(multi_data, "data2", flagger, co_flagging=True)
    multi_data, flagger = deharmonize(multi_data, "data", flagger, co_flagging=True)

    flags = flagger.getFlags()
    assert pre_data.equals(multi_data[pre_data.columns.to_list()])
    assert len(multi_data) == len(flags)
    assert (pre_flags.index == flags.index).all()


@pytest.mark.parametrize("method", INTERPOLATIONS2)
def test_gridInterpolation(data, method):
    freq = "15min"
    data = (data * np.sin(data)).append(data.shift(1, "2h")).shift(1, "3s")
    # we are just testing if the interolation gets passed to the series without causing an error:
    _interpolateGrid(
        data, freq, method, order=1, agg_method=sum, downcast_interpolation=True
    )
    if method == "polynomial":
        _interpolateGrid(
            data, freq, method, order=2, agg_method=sum, downcast_interpolation=True
        )
        _interpolateGrid(
            data, freq, method, order=10, agg_method=sum, downcast_interpolation=True
        )
        data = _insertGrid(data, freq)
        _interpolate(data, method, inter_limit=3)


@pytest.mark.parametrize("flagger", TESTFLAGGER)
def test_outsortCrap(data, flagger):

    field = data.columns[0]
    flagger = flagger.initFlags(data)
    flagger = flagger.setFlags(field, iloc=slice(5, 7))

    drop_index = data.index[5:7]
    d, _ = _outsortCrap(data, field, flagger, drop_suspicious=True, drop_bad=False)
    assert drop_index.difference(d.index).equals(drop_index)

    d, _ = _outsortCrap(data, field, flagger, drop_suspicious=False, drop_bad=True)
    assert drop_index.difference(d.index).equals(drop_index)

    flagger = flagger.setFlags(field, iloc=slice(0, 1), flag=flagger.GOOD)
    drop_index = drop_index.insert(-1, data.index[0])
    d, _ = _outsortCrap(
        data,
        field,
        flagger,
        drop_suspicious=False,
        drop_bad=False,
        drop_list=[flagger.BAD, flagger.GOOD],
    )

    assert drop_index.sort_values().difference(d.index).equals(drop_index.sort_values())
    f_drop, _ = _outsortCrap(
        data,
        field,
        flagger,
        drop_suspicious=False,
        drop_bad=False,
        drop_list=[flagger.BAD, flagger.GOOD],
        return_drops=True,
    )
    assert f_drop.index.sort_values().equals(drop_index.sort_values())