-
Bert Palm authored
- fixed copy-tests - fixed deepcopy attrs in dios
65378711
test_proc_functions.py 4.23 KiB
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# see test/functs/fixtures.py for global fixtures "course_..."
import dios
from saqc.constants import *
from saqc.core import initFlagsLike
from saqc.funcs.transformation import transform
from saqc.funcs.drift import correctOffset
from saqc.funcs.interpolation import (
interpolateByRolling,
interpolateInvalid,
interpolateIndex,
)
from saqc.funcs.resampling import resample
from saqc.lib.ts_operators import linearInterpolation, polynomialInterpolation
from tests.fixtures import *
def test_rollingInterpolateMissing(course_5):
data, characteristics = course_5(periods=10, nan_slice=[5, 6])
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
dataInt, *_ = interpolateByRolling(
data.copy(),
field,
flags.copy(),
3,
func=np.median,
center=True,
min_periods=0,
interpol_flag=UNFLAGGED,
)
assert dataInt[field][characteristics["missing"]].notna().all()
dataInt, *_ = interpolateByRolling(
data.copy(),
field,
flags.copy(),
3,
func=np.nanmean,
center=False,
min_periods=3,
interpol_flag=UNFLAGGED,
)
assert dataInt[field][characteristics["missing"]].isna().all()
def test_interpolateMissing(course_5):
data, characteristics = course_5(periods=10, nan_slice=[5])
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
dataLin, *_ = interpolateInvalid(data, field, flags, method="linear")
dataPoly, *_ = interpolateInvalid(data, field, flags, method="polynomial")
assert dataLin[field][characteristics["missing"]].notna().all()
assert dataPoly[field][characteristics["missing"]].notna().all()
data, characteristics = course_5(periods=10, nan_slice=[5, 6, 7])
dataLin1, *_ = interpolateInvalid(
data.copy(), field, flags, method="linear", limit=2
)
dataLin2, *_ = interpolateInvalid(
data.copy(), field, flags, method="linear", limit=3
)
dataLin3, *_ = interpolateInvalid(
data.copy(), field, flags, method="linear", limit=4
)
assert dataLin1[field][characteristics["missing"]].isna().all()
assert dataLin2[field][characteristics["missing"]].isna().all()
assert dataLin3[field][characteristics["missing"]].notna().all()
def test_transform(course_5):
data, characteristics = course_5(periods=10, nan_slice=[5, 6])
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
data1, *_ = transform(data, field, flags, func=linearInterpolation)
assert data1[field][characteristics["missing"]].isna().all()
data1, *_ = transform(
data, field, flags, func=lambda x: linearInterpolation(x, inter_limit=3)
)
assert data1[field][characteristics["missing"]].notna().all()
data1, *_ = transform(
data,
field,
flags,
func=lambda x: polynomialInterpolation(x, inter_limit=3, inter_order=3),
)
assert data1[field][characteristics["missing"]].notna().all()
def test_resample(course_5):
data, characteristics = course_5(
freq="1min", periods=30, nan_slice=[1, 11, 12, 22, 24, 26]
)
field = data.columns[0]
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
data1, *_ = resample(
data,
field,
flags,
"10min",
np.mean,
maxna=2,
maxna_group=1,
)
assert ~np.isnan(data1[field].iloc[0])
assert np.isnan(data1[field].iloc[1])
assert np.isnan(data1[field].iloc[2])
def test_interpolateGrid(course_5, course_3):
data, _ = course_5()
data_grid, characteristics = course_3()
data["grid"] = data_grid.to_df()
# data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
dataInt, *_ = interpolateIndex(
data, "data", flags, "1h", "time", grid_field="grid", limit=10
)
def test_offsetCorrecture():
data = pd.Series(0, index=pd.date_range("2000", freq="1d", periods=100), name="dat")
data.iloc[30:40] = -100
data.iloc[70:80] = 100
data = dios.DictOfSeries(data)
flags = initFlagsLike(data)
data, _ = correctOffset(data, "dat", flags, 40, 20, "3d", 1)
assert (data == 0).all()[0]