Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
36
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
1e967201
Commit
1e967201
authored
5 years ago
by
Peter Lünenschloß
Browse files
Options
Downloads
Patches
Plain Diff
flag spikes function for soil moisture variable implemented at working level
parent
61673605
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
saqc/funcs/functions.py
+75
-4
75 additions, 4 deletions
saqc/funcs/functions.py
with
75 additions
and
4 deletions
saqc/funcs/functions.py
+
75
−
4
View file @
1e967201
...
...
@@ -3,6 +3,7 @@
import
numpy
as
np
import
pandas
as
pd
from
scipy.signal
import
savgol_filter
from
..lib.tools
import
valueRange
,
slidingWindowIndices
,
inferFrequency
,
estimateSamplingRate
,
\
retrieveTrustworthyOriginal
...
...
@@ -108,7 +109,7 @@ def flagMad(data, flags, field, flagger, length, z, freq=None, **kwargs):
return
data
,
flags
def
flagSoilMoistureBySoilFrost
(
data
,
flags
,
field
,
flagger
,
soil_temp_reference
,
tolerated_deviation
,
def
flagSoilMoistureBySoilFrost
(
data
,
flags
,
field
,
flagger
,
soil_temp_reference
,
tolerated_deviation
=
'
1h
'
,
frost_level
=
0
,
**
kwargs
):
"""
Function flags Soil moisture measurements by evaluating the soil-frost-level in the moment of measurement.
Soil temperatures below
"
frost_level
"
are regarded as denoting frozen soil state.
...
...
@@ -211,7 +212,7 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
prec_count
=
prec_count
.
resample
(
input_rate
).
pad
()
# now we can: project precipitation onto dataseries sampling (and stack result to be able to apply df.rolling())
eval_frame
=
pd
.
merge
(
dataseries
,
prec_count
,
how
=
'
left
'
,
left_index
=
True
,
right_index
=
True
).
stack
().
reset_index
()
eval_frame
=
pd
.
merge
(
dataseries
,
prec_count
,
how
=
'
left
'
,
left_index
=
True
,
right_index
=
True
).
stack
(
dropna
=
False
).
reset_index
()
# following reshaping operations make all columns available to a function applied on rolling windows (rolling will
# only eat one column of a dataframe at a time and doesnt like multi indexes as well)
...
...
@@ -220,11 +221,11 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
# make raise and std. dev tester function (returns False for values that
# should be flagged bad and True respectively. (must be this way, since np.nan gets casted to True)))
def
prec_test
(
x
):
def
prec_test
(
x
,
std_fac
=
std_factor
):
x_moist
=
x
[
0
::
2
]
x_rain
=
x
[
1
::
2
]
if
x_moist
[
-
1
]
>
x_moist
[
-
2
]:
if
(
x_moist
[
-
1
]
-
x_moist
[
0
])
>
std_fac
tor
*
x_moist
.
std
():
if
(
x_moist
[
-
1
]
-
x_moist
[
0
])
>
std_fac
*
x_moist
.
std
():
return
~
(
x_rain
[
-
1
]
<=
(
sensor_meas_depth
*
soil_porosity
*
sensor_accuracy
))
else
:
return
True
...
...
@@ -244,3 +245,73 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
# set Flags
flags
.
loc
[
invalid_indices
,
field
]
=
flagger
.
setFlag
(
flags
.
loc
[
invalid_indices
,
field
],
**
kwargs
)
return
data
,
flags
def
flagSoilMoistureBySpikeDetection
(
data
,
flags
,
field
,
flagger
,
raise_factor
=
0.15
,
filter_window_size
=
'
3h
'
,
normalized_data
=
True
):
"""
Function
NOTE1: You should run less complex tests, especially range-tests, the flag-by-precipitation-test and the
flag-by-frost test previously to this one, since the spike check for any potential, unflagged spike,
is relatively costly (1 x smoothing + 2 x deviating + 2 x condition application).
NOTE2: Test will only provide meaningful results, if dataseries input of soilmoisture data is projected onto
[0,1] interval
:param data: The pandas dataframe holding the data-to-be flagged, as well as the reference
series. Data must be indexed by a datetime series and be harmonized onto a
time raster with seconds precision.
:param flags: A dataframe holding the flags/flag-entries associated with
"
data
"
.
:param field: Fieldname of the Soil moisture measurements field in data.
:param flagger: A flagger - object. (saqc.flagger.X)
"""
# retrieve data series input at its original sampling rate
# (Note: case distinction for pure series input to avoid error resulting from trying to access pd.Series[field]
if
isinstance
(
data
,
pd
.
Series
):
dataseries
,
data_rate
=
retrieveTrustworthyOriginal
(
data
,
flags
,
flagger
)
else
:
dataseries
,
data_rate
=
retrieveTrustworthyOriginal
(
data
[
field
],
flags
[
field
],
flagger
)
# abort processing if original series has no valid entries!
if
data_rate
is
np
.
nan
:
return
data
,
flags
# normalize data if nessecary
if
~
normalized_data
:
dataseries
=
dataseries
/
100
quotient_series
=
dataseries
/
dataseries
.
shift
(
-
1
)
spikes
=
(
quotient_series
>
(
1
+
raise_factor
))
|
(
quotient_series
<
(
1
-
raise_factor
))
spikes
=
spikes
[
spikes
==
True
]
# loop through spikes: (loop may sound ugly - but since the number of spikes is supposed to not exceed the
# thousands for year data - a loop going through all the spikes instances is much faster than
# a rolling window, rolling all through a stacked year dataframe )
filter_window_seconds
=
pd
.
Timedelta
.
total_seconds
(
pd
.
Timedelta
(
filter_window_size
))
smoothing_periods
=
int
(
np
.
ceil
((
filter_window_seconds
/
data_rate
.
n
)))
if
smoothing_periods
%
2
==
0
:
smoothing_periods
+=
1
for
spike
in
spikes
.
index
:
start_slice
=
spike
-
pd
.
Timedelta
(
filter_window_size
)
end_slice
=
spike
+
pd
.
Timedelta
(
filter_window_size
)
scnd_derivate
=
savgol_filter
(
dataseries
[
start_slice
:
end_slice
],
window_length
=
smoothing_periods
,
polyorder
=
2
,
deriv
=
2
)
length
=
scnd_derivate
.
size
test_ratio_1
=
np
.
abs
(
scnd_derivate
[
int
((
length
-
1
)
/
2
)]
/
scnd_derivate
[
int
((
length
+
1
)
/
2
)])
if
0.8
<
test_ratio_1
<
1.2
:
start_slice
=
spike
-
pd
.
Timedelta
(
'
12h
'
)
end_slice
=
spike
+
pd
.
Timedelta
(
'
12h
'
)
test_slice
=
dataseries
[
start_slice
:
end_slice
]
test_ratio_2
=
np
.
abs
(
test_slice
.
var
()
/
test_slice
.
mean
())
if
test_ratio_2
>
1
:
spikes
[
spike
]
=
False
else
:
spikes
[
spike
]
=
False
spikes
=
spikes
[
spikes
==
True
]
flags
.
loc
[
spikes
.
index
,
field
]
=
flagger
.
setFlag
(
flags
.
loc
[
spikes
.
index
,
field
],
**
kwargs
)
return
data
,
flags
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment