Skip to content
Snippets Groups Projects
Commit 1f303dc4 authored by Peter Lünenschloß's avatar Peter Lünenschloß
Browse files

titlepage md file added

parent 8720344a
No related branches found
No related tags found
7 merge requests!685Release 2.4,!684Release 2.4,!567Release 2.2.1,!566Release 2.2,!501Release 2.1,!372fix doctest snippets,!369Current documentation
......@@ -24,7 +24,7 @@ Data preparation
* Flagging missing values via :py:func:`flagMissing <Functions.saqc.flagMissing>`.
* Flagging out of range values via :py:func:`flagRange <Functions.saqc.flagRange>`.
* Flagging values, where the Specific Conductance (\ *K25*\ ) drops down to near zero. (via :py:func:`flagGeneric <Functions.saqc.flagGeneric>`)
* Flagging values, where the Specific Conductance (\ *K25*\ ) drops down to near zero. (via :py:func:`flagGeneric <Functions.saqc.flag>`)
* Resampling the data via linear Interpolation (:py:func:`linear <Functions.saqc.linear>`).
Drift Correction
......@@ -63,11 +63,11 @@ Basically following the *oddWater* procedure, as suggested in *Talagala, P.D. et
* Variables *SAK254*\ , *Turbidity*\ , *Pegel*\ , *NO3N*\ , *WaterTemp* and *pH* get transformed to comparable scales
* We are obtaining nearest neighbor scores and assigign those to a new variable, via :py:func:`assignKNNScores <Functions.saqc.assignKNNScores>`.
* We are applying the *STRAY* Algorithm to find the cut_off points for the scores, above which values qualify as outliers. (:py:func:`flagByStray <Functions.saqc.flagByStray>`)
* We project the calculated flags onto the input variables via :py:func:`assignKNNScores <Functions.saqc.assignKNNScores>`.
* We project the calculated flags onto the input variables via :py:func:`assignKNNScore <Functions.saqc.assignKNNScore>`.
Posprocessing
-------------
Postprocessing
--------------
* (Flags reduction onto subspaces)
* Backprojection of calculated flags from resampled Data onto original data via :py:func ``mapToOriginal <Functions.saqc.assignKNNScores>``
* Back projection of calculated flags from resampled Data onto original data via :py:func: ``mapToOriginal <Functions.saqc.mapToOriginal>``
......@@ -243,6 +243,8 @@ To see all the results obtained so far, plotted in one figure window, we make us
:alt:
<<<<<<< HEAD
Residues and Scores
-------------------
......@@ -263,6 +265,16 @@ control via the :py:attr:`target` parameter.
.. code-block:: python
i_saqc = i_saqc.procesGeneric(['incidents', 'incidents_model'], target='incidents_residues', func=lambda x, y: x - y)
=======
We want to evaluate the residues of the model, in order to score the outlierish-nes of every point.
First, we retrieve the residues via the :py:func:`saqc.genericProcess <docs.func_modules.genericProcess>` method.
The method generates a new variable, resulting from the processing of other variables. It automatically
generates the field name it gets passed - so we do not have to generate new variable beforehand. The function we apply
is just the computation of the variables difference for any timestep.
```python
i_saqc = i_saqc.genericProcess('incidents_residues', func=lambda incidents, incidents_model:incidents - incidents_model)
>>>>>>> develop
Scores
^^^^^^
......@@ -311,7 +323,7 @@ residues *mean* and *standard deviation* seperately:
i_saqc = i_saqc.rolling.roll(field='incidents_residues', target='residues_std',
window='27D',
func=np.std)
i_saqc = i_saqc.generic.process(field='incidents_scores',
i_saqc = i_saqc.genericProcess(field='incidents_scores',
func=lambda This, residues_mean, residues_std: (
This - residues_mean) / residues_std)
......
......@@ -2,6 +2,8 @@
SaQC documentation
==================
.. include:: misc_md_m2r/TitlePage.rst
.. toctree::
:hidden:
:maxdepth: 1
......
# SaQC
sphinx-doc/ressources/images/Representative/RDMlogo.jpg

57.3 KiB

0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment