Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
36
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
68a12e65
Commit
68a12e65
authored
5 years ago
by
Peter Lünenschloß
Browse files
Options
Downloads
Patches
Plain Diff
FlaggingSoilMoistureByPrecipitation implemented at working level
parent
36529fd6
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
saqc/funcs/functions.py
+42
-18
42 additions, 18 deletions
saqc/funcs/functions.py
with
42 additions
and
18 deletions
saqc/funcs/functions.py
+
42
−
18
View file @
68a12e65
...
...
@@ -172,7 +172,8 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
:param data: The pandas dataframe holding the data-to-be flagged, as well as the reference
series. Data must be indexed by a datetime series.
series. Data must be indexed by a datetime series and be harmonized onto a
time raster with seconds precision.
:param flags: A dataframe holding the flags/flag-entries associated with
"
data
"
.
:param field: Fieldname of the Soil moisture measurements field in data.
:param flagger: A flagger - object. (saqc.flagger.X)
...
...
@@ -183,17 +184,22 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
"""
# retrieve data series input:
dataseries
=
data
[
field
]
dataseries
=
data
[
field
]
.
copy
()
# "nan" suspicious values (neither "unflagged" nor "min-flagged")
data_flags
=
flags
[
field
]
data_use
=
flagger
.
isFlagged
(
data_flags
,
flag
=
flagger
.
flags
.
min
())
|
\
flagger
.
isFlagged
(
data_flags
,
flag
=
flagger
.
flags
.
unflagged
())
dataseries
[
~
data_use
]
=
np
.
nan
flagger
.
isFlagged
(
data_flags
,
flag
=
flagger
.
flags
.
unflagged
())
dataseries
.
loc
[
~
data_use
]
=
np
.
nan
# drop the suspicious values together with the nan values that result from any preceeding upsampling of the
# measurements:
dataseries
=
dataseries
.
dropna
()
# retrieve reference series input
refseries
=
data
[
prec_ref
]
refseries
=
data
[
prec_ref
erence
].
copy
()
# "nan" suspicious values (neither "unflagged" nor "min-flagged")
# NOTE: suspicious values wont be dropped from reference series, because they make suspicious the entire
# 24h aggregation intervall, that is computed later on.
ref_flags
=
flags
[
prec_reference
]
ref_use
=
flagger
.
isFlagged
(
ref_flags
,
flag
=
flagger
.
flags
.
min
())
|
\
flagger
.
isFlagged
(
ref_flags
,
flag
=
flagger
.
flags
.
unflagged
())
...
...
@@ -201,30 +207,48 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
# estimate moisture sampling frequencie (the original series sampling rate may not match data-input sample rate):
scnds_series
=
(
pd
.
Series
(
dataseries
.
index
).
diff
().
dt
.
total_seconds
()).
dropna
()
hist
=
np
.
histogram
(
scnds_series
,
bins
=
scnds_series
.
size
)
max_scnds
=
scnds_series
.
max
()
min_scnds
=
scnds_series
.
min
()
hist
=
np
.
histogram
(
scnds_series
,
range
=
(
min_scnds
,
max_scnds
+
1
),
bins
=
int
(
max_scnds
-
min_scnds
+
1
))
moist_rate
=
pd
.
tseries
.
frequencies
.
to_offset
(
str
(
int
(
hist
[
1
][
hist
[
0
].
argmax
()]))
+
'
s
'
)
# resample dataseries to its original sampling rate
dataseries
=
dataseries
.
resample
(
moist_rate
).
asfreq
()
# get 24 h prec. monitor (
we dont exclude nans, since a 24h window with
# get 24 h prec. monitor (
this makes last-24h-rainfall-evaluation independent from preceeding entries)
prec_count
=
refseries
.
rolling
(
window
=
'
1D
'
).
sum
()
# project it onto dataseries
prec_count
=
prec_count
[
dataseries
.
index
]
# make raise and std. dev tester function:
# now we can: project precipitation onto dataseries sampling (and stack result to be able to apply df.rolling())
eval_frame
=
pd
.
merge
(
dataseries
,
prec_count
,
how
=
'
left
'
,
left_index
=
True
,
right_index
=
True
).
stack
().
reset_index
()
# following reshaping operations make all columns available to a function applied on rolling windows (rolling will
# only eat one column of a dataframe at a time and doesnt like multi indexes as well)
ef
=
eval_frame
[
0
]
ef
.
index
=
eval_frame
[
'
level_0
'
]
# make raise and std. dev tester function (returns True for values that
# should be flagged bad and False respectively. (must be this way, since np.nan gets casted to True))
def
prec_test
(
x
):
if
x
[
field
][
-
1
]
>
x
[
field
][
-
2
]:
if
(
x
[
field
][
-
1
]
-
x
[
field
][
0
])
>
2
*
x
[
field
].
std
():
return
x
[
prec_reference
][
-
1
]
<=
(
sensor_meas_depth
*
soil_porosity
*
sensor_accuracy
)
x_moist
=
x
[
0
::
2
]
x_rain
=
x
[
1
::
2
]
if
x_moist
[
-
1
]
>
x_moist
[
-
2
]:
if
(
x_moist
[
-
1
]
-
x_moist
[
0
])
>
2
*
x_moist
.
std
():
return
~
(
x_rain
[
-
1
]
<=
(
sensor_meas_depth
*
soil_porosity
*
sensor_accuracy
))
else
:
return
Fals
e
return
Tru
e
else
:
return
Fals
e
return
Tru
e
# get valid moisture raises:
valid_raises
=
refseries
.
rolling
(
window
=
'
1D
'
,
closed
=
'
both
'
,
min_periods
=
2
)
\
.
apply
(
prec_test
).
astype
(
bool
)
# rolling.apply should only get active every second entrie of the stacked frame,
# so periods per window have to be calculated,
# (this gives sufficiant conditian since window size controlls daterange:)
periods
=
2
*
int
(
24
*
60
*
60
/
moist_rate
.
n
)
invalid_raises
=
~
ef
.
rolling
(
window
=
'
1D
'
,
closed
=
'
both
'
,
min_periods
=
periods
)
\
.
apply
(
prec_test
,
raw
=
False
).
astype
(
bool
)
# apply calculated flagging mask
flags
.
loc
[
invalid_raises
.
values
,
field
]
=
flagger
.
setFlag
(
flags
.
loc
[
invalid_raises
.
values
,
field
],
**
kwargs
)
# get 24h valid std. dev for valid moisture raises
return
(
data
,
flags
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment