Skip to content
Snippets Groups Projects
Commit 68a12e65 authored by Peter Lünenschloß's avatar Peter Lünenschloß
Browse files

FlaggingSoilMoistureByPrecipitation implemented at working level

parent 36529fd6
No related branches found
No related tags found
No related merge requests found
......@@ -172,7 +172,8 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
:param data: The pandas dataframe holding the data-to-be flagged, as well as the reference
series. Data must be indexed by a datetime series.
series. Data must be indexed by a datetime series and be harmonized onto a
time raster with seconds precision.
:param flags: A dataframe holding the flags/flag-entries associated with "data".
:param field: Fieldname of the Soil moisture measurements field in data.
:param flagger: A flagger - object. (saqc.flagger.X)
......@@ -183,17 +184,22 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
"""
# retrieve data series input:
dataseries = data[field]
dataseries = data[field].copy()
# "nan" suspicious values (neither "unflagged" nor "min-flagged")
data_flags = flags[field]
data_use = flagger.isFlagged(data_flags, flag=flagger.flags.min()) | \
flagger.isFlagged(data_flags, flag=flagger.flags.unflagged())
dataseries[~data_use] = np.nan
flagger.isFlagged(data_flags, flag=flagger.flags.unflagged())
dataseries.loc[~data_use] = np.nan
# drop the suspicious values together with the nan values that result from any preceeding upsampling of the
# measurements:
dataseries = dataseries.dropna()
# retrieve reference series input
refseries = data[prec_ref]
refseries = data[prec_reference].copy()
# "nan" suspicious values (neither "unflagged" nor "min-flagged")
# NOTE: suspicious values wont be dropped from reference series, because they make suspicious the entire
# 24h aggregation intervall, that is computed later on.
ref_flags = flags[prec_reference]
ref_use = flagger.isFlagged(ref_flags, flag=flagger.flags.min()) | \
flagger.isFlagged(ref_flags, flag=flagger.flags.unflagged())
......@@ -201,30 +207,48 @@ def flagSoilMoistureByPrecipitationEvents(data, flags, field, flagger, prec_refe
# estimate moisture sampling frequencie (the original series sampling rate may not match data-input sample rate):
scnds_series = (pd.Series(dataseries.index).diff().dt.total_seconds()).dropna()
hist = np.histogram(scnds_series, bins=scnds_series.size)
max_scnds = scnds_series.max()
min_scnds = scnds_series.min()
hist = np.histogram(scnds_series, range=(min_scnds, max_scnds + 1), bins=int(max_scnds - min_scnds + 1))
moist_rate = pd.tseries.frequencies.to_offset(str(int(hist[1][hist[0].argmax()])) + 's')
# resample dataseries to its original sampling rate
dataseries = dataseries.resample(moist_rate).asfreq()
# get 24 h prec. monitor (we dont exclude nans, since a 24h window with
# get 24 h prec. monitor (this makes last-24h-rainfall-evaluation independent from preceeding entries)
prec_count = refseries.rolling(window='1D').sum()
# project it onto dataseries
prec_count = prec_count[dataseries.index]
# make raise and std. dev tester function:
# now we can: project precipitation onto dataseries sampling (and stack result to be able to apply df.rolling())
eval_frame = pd.merge(dataseries, prec_count, how='left', left_index=True, right_index=True).stack().reset_index()
# following reshaping operations make all columns available to a function applied on rolling windows (rolling will
# only eat one column of a dataframe at a time and doesnt like multi indexes as well)
ef = eval_frame[0]
ef.index = eval_frame['level_0']
# make raise and std. dev tester function (returns True for values that
# should be flagged bad and False respectively. (must be this way, since np.nan gets casted to True))
def prec_test(x):
if x[field][-1] > x[field][-2]:
if (x[field][-1] - x[field][0]) > 2*x[field].std():
return x[prec_reference][-1] <= (sensor_meas_depth*soil_porosity*sensor_accuracy)
x_moist = x[0::2]
x_rain = x[1::2]
if x_moist[-1] > x_moist[-2]:
if (x_moist[-1] - x_moist[0]) > 2*x_moist.std():
return ~(x_rain[-1] <= (sensor_meas_depth*soil_porosity*sensor_accuracy))
else:
return False
return True
else:
return False
return True
# get valid moisture raises:
valid_raises = refseries.rolling(window='1D', closed='both', min_periods=2)\
.apply(prec_test).astype(bool)
# rolling.apply should only get active every second entrie of the stacked frame,
# so periods per window have to be calculated,
# (this gives sufficiant conditian since window size controlls daterange:)
periods = 2*int(24*60*60/moist_rate.n)
invalid_raises = ~ef.rolling(window='1D', closed='both', min_periods=periods)\
.apply(prec_test, raw=False).astype(bool)
# apply calculated flagging mask
flags.loc[invalid_raises.values, field] = flagger.setFlag(flags.loc[invalid_raises.values, field], **kwargs)
# get 24h valid std. dev for valid moisture raises
return (data, flags)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment