Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
36
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
8b7947fb
Commit
8b7947fb
authored
5 years ago
by
David Schäfer
Browse files
Options
Downloads
Patches
Plain Diff
making the harmonization indepedent from the CategoricalFlagger
parent
ea43c562
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
saqc/funcs/harm_functions.py
+31
-61
31 additions, 61 deletions
saqc/funcs/harm_functions.py
test/funcs/test_harm_funcs.py
+4
-27
4 additions, 27 deletions
test/funcs/test_harm_funcs.py
with
35 additions
and
88 deletions
saqc/funcs/harm_functions.py
+
31
−
61
View file @
8b7947fb
...
...
@@ -7,6 +7,7 @@ import logging
from
saqc.funcs.functions
import
flagMissing
from
saqc.funcs.register
import
register
from
saqc.lib.tools
import
toSequence
# todo: frequencie estimation function
...
...
@@ -46,10 +47,11 @@ def harmWrapper(harm=True, heap={}):
inter_order
=
1
,
inter_downcast
=
False
,
reshape_agg
=
max
,
reshape_missing_flag
_index
=-
1
,
reshape_missing_flag
=
None
,
reshape_shift_comment
=
False
,
outsort_drop_susp
=
True
,
outsort_drop_list
=
None
,
drop_flags
=
None
,
# outsort_drop_susp=True,
# outsort_drop_list=None,
data_missing_value
=
np
.
nan
,
**
kwargs
):
...
...
@@ -72,8 +74,9 @@ def harmWrapper(harm=True, heap={}):
"
original_flagger
"
:
flagger_merged
,
"
freq
"
:
freq
,
"
reshape_method
"
:
reshape_method
,
"
drop_susp
"
:
outsort_drop_susp
,
"
drop_list
"
:
outsort_drop_list
,
"
drop_flags
"
:
drop_flags
,
# "drop_susp": outsort_drop_susp,
# "drop_list": outsort_drop_list,
}
# furthermore we need to memorize the initial timestamp to ensure output format will equal input format.
...
...
@@ -82,12 +85,7 @@ def harmWrapper(harm=True, heap={}):
# now we can manipulate it without loosing information gathered before harmonization
dat_col
,
flagger_merged_clean
=
_outsortCrap
(
dat_col
,
field
,
flagger_merged
,
drop_suspicious
=
outsort_drop_susp
,
drop_bad
=
True
,
drop_list
=
outsort_drop_list
,
dat_col
,
field
,
flagger_merged
,
drop_flags
=
drop_flags
,
)
# interpolation! (yeah)
...
...
@@ -108,7 +106,7 @@ def harmWrapper(harm=True, heap={}):
ref_index
=
dat_col
.
index
,
method
=
reshape_method
,
agg_method
=
reshape_agg
,
missing_flag
=
reshape_missing_flag
_index
,
missing_flag
=
reshape_missing_flag
,
set_shift_comment
=
reshape_shift_comment
,
**
kwargs
)
...
...
@@ -137,8 +135,9 @@ def harmWrapper(harm=True, heap={}):
# get some deharm configuration infos from the heap:
freq
=
heap
[
field
][
"
freq
"
]
redrop_susp
=
heap
[
field
][
"
drop_susp
"
]
redrop_list
=
heap
[
field
][
"
drop_list
"
]
redrop_flags
=
heap
[
field
][
"
drop_flags
"
]
# redrop_susp = heap[field]["drop_susp"]
# redrop_list = heap[field]["drop_list"]
resolve_method
=
harm_2_deharm
[
heap
[
field
][
"
reshape_method
"
]]
# retrieve data and flags from the merged saqc-conform data frame (and by that get rid of blow-up entries).
...
...
@@ -150,9 +149,9 @@ def harmWrapper(harm=True, heap={}):
dat_col
,
field
,
heap
[
field
][
"
original_flagger
"
],
drop_suspicious
=
redrop_susp
,
drop_bad
=
True
,
drop_
list
=
redrop_
list
,
#
drop_suspicious=redrop_susp,
#
drop_bad=True,
drop_
flags
=
redrop_
flags
,
return_drops
=
True
,
)
...
...
@@ -219,11 +218,12 @@ def _outsortCrap(
data
,
field
,
flagger
,
drop_suspicious
=
True
,
drop_bad
=
True
,
drop_list
=
None
,
# drop_suspicious=True,
# drop_bad=True,
# drop_list=None,
drop_flags
=
None
,
return_drops
=
False
,
**
kwargs
#
**kwargs
):
"""
Harmonization gets the more easy, the more data points we can exclude from crowded sampling intervals.
...
...
@@ -231,7 +231,6 @@ def _outsortCrap(
the data and the flags passed. In deharmonization the function is used to reconstruct original flags field shape.
:param data: pd.Series. [
'
data
'
].
:param flags: pd.PandasLike. The flags associated with the data passed.
:param flagger: saqc.flagger.
:param drop_suspicious: Boolean. Default = True. If True, only values that are flagged GOOD or UNFLAGGED get
processed.
...
...
@@ -247,35 +246,15 @@ def _outsortCrap(
drop_mask
=
pd
.
Series
(
data
=
False
,
index
=
data
.
index
)
if
drop_bad
is
True
:
drop_flags
=
toSequence
(
drop_flags
,
default
=
flagger
.
BAD
)
for
drop_flag
in
drop_flags
:
drop_mask
=
drop_mask
|
flagger
.
isFlagged
(
field
,
flag
=
flagger
.
BAD
,
comparator
=
"
==
"
)
if
drop_suspicious
is
True
:
drop_mask
=
drop_mask
|
~
(
flagger
.
isFlagged
(
field
,
flag
=
flagger
.
GOOD
,
comparator
=
"
<=
"
)
field
,
flag
=
drop_flag
,
comparator
=
"
==
"
)
if
drop_list
is
not
None
:
for
to_drop
in
drop_list
:
if
to_drop
in
flagger
.
dtype
.
categories
:
drop_mask
=
drop_mask
|
flagger
.
isFlagged
(
field
,
flag
=
to_drop
,
comparator
=
"
==
"
)
else
:
logging
.
warning
(
'
Cant drop
"
{}
"
- flagged data. Its not a flag value, the passed flagger happens to
'
"
know about.
"
.
format
(
str
(
to_drop
))
)
flagger_out
=
flagger
.
getFlagger
(
loc
=~
drop_mask
)
# data_out = flagger.getFlags(loc=drop_mask) if return_drops else data[~drop]
if
return_drops
:
# return flag drops at first argument
return
flagger
.
getFlags
(
loc
=
drop_mask
),
flagger_out
# return flags[drop_mask], flags[~drop_mask]
# return data at first argument
return
data
[
~
drop_mask
],
flagger_out
...
...
@@ -537,7 +516,7 @@ def _reshapeFlags(
ref_index
,
method
=
"
fshift
"
,
agg_method
=
max
,
missing_flag
=
-
1
,
missing_flag
=
None
,
set_shift_comment
=
True
,
**
kwargs
):
...
...
@@ -581,6 +560,7 @@ def _reshapeFlags(
:return: flags: pd.Series/pd.DataFrame. The reshaped pandas like Flags object, referring to the harmonized data.
"""
missing_flag
=
missing_flag
or
flagger
.
UNFLAGGED
aggregations
=
[
"
nearest_agg
"
,
"
bagg
"
,
"
fagg
"
]
shifts
=
[
"
fshift
"
,
"
bshift
"
,
"
nearest_shift
"
]
...
...
@@ -608,11 +588,7 @@ def _reshapeFlags(
flags_series
=
flags
.
squeeze
()
flagger_new
=
flagger
.
initFlags
(
flags
=
flags
).
setFlags
(
field
,
loc
=
flags_series
.
isna
(),
flag
=
flagger
.
dtype
.
categories
[
missing_flag
],
force
=
True
,
**
kwargs
field
,
loc
=
flags_series
.
isna
(),
flag
=
missing_flag
,
force
=
True
,
**
kwargs
)
if
set_shift_comment
:
...
...
@@ -654,11 +630,7 @@ def _reshapeFlags(
.
squeeze
()
.
resample
(
freq_string
,
closed
=
closed
,
label
=
label
,
base
=
base
)
# NOTE: breaks for non categorical flaggers
.
apply
(
lambda
x
:
agg_method
(
x
)
if
not
x
.
empty
else
flagger
.
dtype
.
categories
[
missing_flag
]
)
.
apply
(
lambda
x
:
agg_method
(
x
)
if
not
x
.
empty
else
missing_flag
)
.
astype
(
flagger
.
dtype
)
.
to_frame
(
name
=
field
)
)
...
...
@@ -808,22 +780,20 @@ def _toMerged(
# trivial case: there is only one variable:
if
flags
.
empty
:
data
=
data_to_insert
.
reindex
(
target_index
).
to_frame
(
name
=
fieldname
)
flags
=
flags_to_insert
.
reindex
(
target_index
,
fill_value
=
flagger
.
dtype
.
categories
[
0
]
)
flags
=
flags_to_insert
.
reindex
(
target_index
,
fill_value
=
flagger
.
UNFLAGGED
)
return
data
,
flagger
.
initFlags
(
flags
=
flags
)
# annoying case: more than one variables:
# erase nan rows resulting from harmonization but keep/regain those, that were initially present in the data:
new_index
=
data
[
mask
].
index
.
join
(
target_index
,
how
=
"
outer
"
)
data
=
data
.
reindex
(
new_index
)
flags
=
flags
.
reindex
(
new_index
,
fill_value
=
flagger
.
dtype
.
categories
[
0
]
)
flags
=
flags
.
reindex
(
new_index
,
fill_value
=
flagger
.
UNFLAGGED
)
data
=
pd
.
merge
(
data
,
data_to_insert
,
how
=
"
outer
"
,
left_index
=
True
,
right_index
=
True
)
flags
=
pd
.
merge
(
flags
,
flags_to_insert
,
how
=
"
outer
"
,
left_index
=
True
,
right_index
=
True
)
flags
.
fillna
(
flagger
.
dtype
.
categories
[
0
]
,
inplace
=
True
)
flags
.
fillna
(
flagger
.
UNFLAGGED
,
inplace
=
True
)
# internally harmonization memorizes its own manipulation by inserting nan flags -
# those we will now assign the flagger.bad flag by the "missingTest":
...
...
This diff is collapsed.
Click to expand it.
test/funcs/test_harm_funcs.py
+
4
−
27
View file @
8b7947fb
...
...
@@ -18,23 +18,16 @@ from saqc.funcs.harm_functions import (
)
TESTFLAGGER
=
TESTFLAGGER
[:
-
1
]
RESHAPERS
=
[
"
nearest_shift
"
,
"
fshift
"
,
"
bshift
"
]
COFLAGGING
=
[
False
,
True
]
SETSHIFTCOMMENT
=
[
False
,
True
]
INTERPOLATIONS
=
[
"
fshift
"
,
"
bshift
"
,
"
nearest_shift
"
,
"
nearest_agg
"
,
"
bagg
"
]
INTERPOLATIONS2
=
[
"
fagg
"
,
"
time
"
,
"
polynomial
"
]
FREQS
=
[
"
15min
"
,
"
30min
"
]
...
...
@@ -317,31 +310,15 @@ def test_outsortCrap(data, flagger):
flagger
=
flagger
.
setFlags
(
field
,
iloc
=
slice
(
5
,
7
))
drop_index
=
data
.
index
[
5
:
7
]
d
,
_
=
_outsortCrap
(
data
,
field
,
flagger
,
drop_suspicious
=
True
,
drop_bad
=
False
)
assert
drop_index
.
difference
(
d
.
index
).
equals
(
drop_index
)
d
,
_
=
_outsortCrap
(
data
,
field
,
flagger
,
drop_suspicious
=
False
,
drop_bad
=
True
)
d
,
_
=
_outsortCrap
(
data
,
field
,
flagger
,
drop_flags
=
flagger
.
BAD
)
assert
drop_index
.
difference
(
d
.
index
).
equals
(
drop_index
)
flagger
=
flagger
.
setFlags
(
field
,
iloc
=
slice
(
0
,
1
),
flag
=
flagger
.
GOOD
)
drop_index
=
drop_index
.
insert
(
-
1
,
data
.
index
[
0
])
d
,
_
=
_outsortCrap
(
data
,
field
,
flagger
,
drop_suspicious
=
False
,
drop_bad
=
False
,
drop_list
=
[
flagger
.
BAD
,
flagger
.
GOOD
],
)
d
,
_
=
_outsortCrap
(
data
,
field
,
flagger
,
drop_flags
=
[
flagger
.
BAD
,
flagger
.
GOOD
],)
assert
drop_index
.
sort_values
().
difference
(
d
.
index
).
equals
(
drop_index
.
sort_values
())
f_drop
,
_
=
_outsortCrap
(
data
,
field
,
flagger
,
drop_suspicious
=
False
,
drop_bad
=
False
,
drop_list
=
[
flagger
.
BAD
,
flagger
.
GOOD
],
return_drops
=
True
,
data
,
field
,
flagger
,
drop_flags
=
[
flagger
.
BAD
,
flagger
.
GOOD
],
return_drops
=
True
,
)
assert
f_drop
.
index
.
sort_values
().
equals
(
drop_index
.
sort_values
())
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment