Skip to content
Snippets Groups Projects
Commit 8eae4b96 authored by Bert Palm's avatar Bert Palm 🎇
Browse files

fixed curvefit.py and rolling.py

parent ad8703c6
No related branches found
No related tags found
4 merge requests!271Static expansion of regular expressions,!260Follow-Up Translations,!237Flagger Translations,!232WIP: Fuzzy testing
......@@ -18,7 +18,6 @@ from saqc.flagger import Flagger
from saqc.lib.ts_operators import polyRollerIrregular, polyRollerNumba, polyRoller, polyRollerNoMissingNumba, polyRollerNoMissing
@register(masking='field', module="curvefit")
def fitPolynomial(data: DictOfSeries, field: str, flagger: Flagger,
winsz: Union[int, str],
......@@ -103,11 +102,11 @@ def fitPolynomial(data: DictOfSeries, field: str, flagger: Flagger,
Flags values may have changed relatively to the flagger input.
"""
# todo: some (rater large) parts are functional similar to saqc.funcs.rolling.roll
if data[field].empty:
return data, flagger
data = data.copy()
to_fit = data[field]
flags = flagger.getFlags(field)
regular = getFreqDelta(to_fit.index)
if not regular:
if isinstance(winsz, int):
......@@ -194,13 +193,11 @@ def fitPolynomial(data: DictOfSeries, field: str, flagger: Flagger,
data[field] = residues
if eval_flags:
num_cats, codes = flags.factorize()
num_cats = pd.Series(num_cats, index=flags.index).rolling(winsz, center=True, min_periods=min_periods).max()
nan_samples = num_cats[num_cats.isna()]
num_cats.drop(nan_samples.index, inplace=True)
to_flag = pd.Series(codes[num_cats.astype(int)], index=num_cats.index)
to_flag = to_flag.align(nan_samples)[0]
to_flag[nan_samples.index] = flags[nan_samples.index]
flagger = flagger.setFlags(field, to_flag.values, **kwargs)
# with the new flagger we dont have to care
# about to set NaNs to the original flags anymore
# todo: we does not get any flags here, because of masking=field
worst = flagger[field].rolling(winsz, center=True, min_periods=min_periods).max()
flagger[field] = worst
return data, flagger
......@@ -72,7 +72,6 @@ def roll(
data = data.copy()
to_fit = data[field]
flags = flagger.getFlags(field)
if to_fit.empty:
return data, flagger
......@@ -123,13 +122,10 @@ def roll(
data[field] = means
if eval_flags:
num_cats, codes = flags.factorize()
num_cats = pd.Series(num_cats, index=flags.index).rolling(winsz, center=True, min_periods=min_periods).max()
nan_samples = num_cats[num_cats.isna()]
num_cats.drop(nan_samples.index, inplace=True)
to_flag = pd.Series(codes[num_cats.astype(int)], index=num_cats.index)
to_flag = to_flag.align(nan_samples)[0]
to_flag[nan_samples.index] = flags[nan_samples.index]
flagger = flagger.setFlags(field, to_flag.values, **kwargs)
# with the new flagger we dont have to care
# about to set NaNs to the original flags anymore
# todo: we does not get any flags here, because of masking=field
worst = flagger[field].rolling(winsz, center=True, min_periods=min_periods).max()
flagger[field] = worst
return data, flagger
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment