Skip to content
Snippets Groups Projects
Commit 9289dda2 authored by Peter Lünenschloß's avatar Peter Lünenschloß
Browse files

commit

parent f5c075ab
No related branches found
No related tags found
5 merge requests!685Release 2.4,!684Release 2.4,!567Release 2.2.1,!566Release 2.2,!501Release 2.1
......@@ -6,15 +6,28 @@ The tutorial aims to introduce the usage of SaQC in the context of some more com
Mainly we will see how to apply Drift Corrections onto the data and how to perform multivariate flagging.
#. :ref:`Data Preparation <cook_books/MultivariateFlagging:Data Preparation>`
#. `Data Preparation`_
#. :ref:`Drift Correction <cook_books/MultivariateFlagging:Drift Correction>`
#. `Drift Correction`_
#. `Multivariate Flagging (odd Water) <#Multivariate-Flagging>`_
#. `Multivariate-Flagging`_
Data preparation
Data Preparation
----------------
.. testsetup:: exampleMV
datapath = './ressources/data/hydro_data.csv'
maintpath = './ressources/data/hydro_maint.csv'
First import the data (from the repository), and generate an saqc object from it. You will need to download the sensor
data and maintenance data for the tutorial from
.. doctest:: exampleMV
>>> data = pd.read_csv(datapath, index_col=0)
>>> maint = pd.read_csv(maintpath, index_col=0)
* Flagging missing values via :py:func:`flagMissing <Functions.saqc.flagMissing>`.
* Flagging out of range values via :py:func:`flagRange <Functions.saqc.flagRange>`.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment