Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
36
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
a0147299
Commit
a0147299
authored
4 years ago
by
Bert Palm
🎇
Browse files
Options
Downloads
Patches
Plain Diff
fixed harmo tests
parent
88fab5d3
No related branches found
No related tags found
3 merge requests
!271
Static expansion of regular expressions
,
!260
Follow-Up Translations
,
!237
Flagger Translations
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tests/funcs/test_harm_funcs.py
+103
-170
103 additions, 170 deletions
tests/funcs/test_harm_funcs.py
with
103 additions
and
170 deletions
tests/funcs/test_harm_funcs.py
+
103
−
170
View file @
a0147299
#! /usr/bin/env python
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
# see test/functs/conftest.py for global fixtures "course_..."
import
pytest
import
pytest
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
import
dios
import
dios
from
test.common
import
TESTFLAGGER
from
saqc.flagger
import
Flagger
,
initFlagsLike
from
saqc.flagger
import
Flagger
,
initFlagsLike
from
saqc.common
import
BAD
from
saqc.constants
import
BAD
,
UNFLAGGED
from
saqc.funcs.resampling
import
(
from
saqc.funcs.resampling
import
(
linear
,
linear
,
interpolate
,
interpolate
,
...
@@ -20,10 +16,6 @@ from saqc.funcs.resampling import (
...
@@ -20,10 +16,6 @@ from saqc.funcs.resampling import (
mapToOriginal
,
mapToOriginal
,
)
)
RESHAPERS
=
[
"
nshift
"
,
"
fshift
"
,
"
bshift
"
,
"
nagg
"
,
"
bagg
"
,
"
fagg
"
,
"
interpolation
"
]
INTERPOLATIONS
=
[
"
time
"
,
"
polynomial
"
]
@pytest.fixture
@pytest.fixture
def
data
():
def
data
():
...
@@ -41,184 +33,125 @@ def data():
...
@@ -41,184 +33,125 @@ def data():
return
data
return
data
@pytest.mark.parametrize
(
"
flagger
"
,
TESTFLAGGER
)
@pytest.mark.parametrize
(
"
reshaper
"
,
[
"
nshift
"
,
"
fshift
"
,
"
bshift
"
,
"
nagg
"
,
"
bagg
"
,
"
fagg
"
,
"
interpolation
"
])
@pytest.mark.parametrize
(
"
reshaper
"
,
RESHAPERS
)
def
test_harmSingleVarIntermediateFlagging
(
data
,
reshaper
):
def
test_harmSingleVarIntermediateFlagging
(
data
,
flagger
,
reshaper
):
flagger
=
initFlagsLike
(
data
)
flagger
=
initFlagsLike
(
data
)
# make pre harm copies:
field
=
'
data
'
pre_data
=
data
.
copy
()
pre_data
=
data
.
copy
()
pre_flags
=
flagger
[
'
data
'
]
pre_flagger
=
flagger
.
copy
()
freq
=
"
15min
"
assert
len
(
data
.
columns
)
==
1
data
,
flagger
=
linear
(
data
,
field
,
flagger
,
freq
=
"
15min
"
)
field
=
data
.
columns
[
0
]
data
,
flagger
=
linear
(
data
,
"
data
"
,
flagger
,
freq
)
# flag something bad
# flag something bad
f_ser
=
pd
.
Series
(
data
=
[
-
np
.
inf
]
*
len
(
data
[
field
]),
index
=
data
[
field
].
index
)
flagger
[
data
[
field
].
index
[
3
:
4
],
field
]
=
BAD
f_ser
[
3
:
4
]
=
BAD
data
,
flagger
=
mapToOriginal
(
data
,
field
,
flagger
,
method
=
"
inverse_
"
+
reshaper
)
flagger
[
field
]
=
f_ser
data
,
flagger
=
mapToOriginal
(
data
,
"
data
"
,
flagger
,
method
=
"
inverse_
"
+
reshaper
)
assert
len
(
data
[
field
])
==
len
(
flagger
[
field
])
d
=
data
[
field
]
assert
data
[
field
].
equals
(
pre_data
[
field
])
if
reshaper
==
"
nagg
"
:
assert
flagger
[
field
].
index
.
equals
(
pre_flagger
[
field
].
index
)
assert
flagger
.
isFlagged
(
loc
=
d
.
index
[
3
:
7
]).
squeeze
().
all
()
assert
(
~
flagger
.
isFlagged
(
loc
=
d
.
index
[
0
:
3
]).
squeeze
()).
all
()
if
'
agg
'
in
reshaper
:
assert
(
~
flagger
.
isFlagged
(
loc
=
d
.
index
[
7
:]).
squeeze
()).
all
()
if
reshaper
==
"
nagg
"
:
if
reshaper
==
"
nshift
"
:
start
,
end
=
3
,
7
assert
(
flagger
.
isFlagged
().
squeeze
()
==
[
False
,
False
,
False
,
False
,
True
,
False
,
False
,
False
,
False
]).
all
()
elif
reshaper
==
"
fagg
"
:
if
reshaper
==
"
bagg
"
:
start
,
end
=
3
,
5
assert
flagger
.
isFlagged
(
loc
=
d
.
index
[
5
:
7
]).
squeeze
().
all
()
elif
reshaper
==
"
bagg
"
:
assert
(
~
flagger
.
isFlagged
(
loc
=
d
.
index
[
0
:
5
]).
squeeze
()).
all
()
start
,
end
=
5
,
7
assert
(
~
flagger
.
isFlagged
(
loc
=
d
.
index
[
7
:]).
squeeze
()).
all
()
else
:
if
reshaper
==
"
bshift
"
:
raise
NotImplementedError
(
'
untested test case
'
)
assert
(
flagger
.
isFlagged
().
squeeze
()
==
[
False
,
False
,
False
,
False
,
False
,
True
,
False
,
False
,
False
]).
all
()
if
reshaper
==
"
fagg
"
:
assert
all
(
flagger
[
field
].
iloc
[
start
:
end
])
assert
flagger
.
isFlagged
(
loc
=
d
.
index
[
3
:
5
]).
squeeze
().
all
()
assert
all
(
~
flagger
[
field
].
iloc
[:
start
])
assert
(
~
flagger
.
isFlagged
(
loc
=
d
.
index
[
0
:
3
]).
squeeze
()).
all
()
assert
all
(
~
flagger
[
field
].
iloc
[
end
:])
assert
(
~
flagger
.
isFlagged
(
loc
=
d
.
index
[
5
:]).
squeeze
()).
all
()
if
reshaper
==
"
fshift
"
:
elif
'
shift
'
in
reshaper
:
assert
(
flagger
.
isFlagged
().
squeeze
()
==
[
False
,
False
,
False
,
False
,
True
,
False
,
False
,
False
,
False
]).
all
()
if
reshaper
==
"
nshift
"
:
exp
=
[
False
,
False
,
False
,
False
,
True
,
False
,
False
,
False
,
False
]
flags
=
flagger
.
getFlags
()
elif
reshaper
==
"
fshift
"
:
assert
pre_data
[
field
].
equals
(
data
[
field
])
exp
=
[
False
,
False
,
False
,
False
,
True
,
False
,
False
,
False
,
False
]
assert
len
(
data
[
field
])
==
len
(
flags
[
field
])
elif
reshaper
==
"
bshift
"
:
assert
(
pre_flags
[
field
].
index
==
flags
[
field
].
index
).
all
()
exp
=
[
False
,
False
,
False
,
False
,
False
,
True
,
False
,
False
,
False
]
else
:
raise
NotImplementedError
(
'
untested test case
'
)
@pytest.mark.parametrize
(
"
flagger
"
,
TESTFLAGGER
)
def
test_harmSingleVarInterpolations
(
data
,
flagger
):
flagged
=
flagger
[
field
]
>
UNFLAGGED
flagger
=
flagger
.
initFlags
(
data
)
assert
all
(
flagged
==
exp
)
field
=
data
.
columns
[
0
]
pre_data
=
data
[
field
]
else
:
pre_flags
=
flagger
.
getFlags
(
field
)
raise
NotImplementedError
(
'
untested test case
'
)
tests
=
[
(
"
nagg
"
,
@pytest.mark.parametrize
(
"
15Min
"
,
'
params, expected
'
,
pd
.
Series
(
[
data
=
[
-
87.5
,
-
25.0
,
0.0
,
37.5
,
50.0
],
((
"
nagg
"
,
"
15Min
"
),
pd
.
Series
(
data
=
[
-
87.5
,
-
25.0
,
0.0
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2011-01-01 00:00:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15min
"
))),
index
=
pd
.
date_range
(
"
2011-01-01 00:00:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15min
"
),
((
"
nagg
"
,
"
30Min
"
),
pd
.
Series
(
data
=
[
-
87.5
,
-
25.0
,
87.5
],
index
=
pd
.
date_range
(
"
2011-01-01 00:00:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30min
"
))),
),
((
"
bagg
"
,
"
15Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
-
37.5
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15min
"
))),
),
((
"
bagg
"
,
"
30Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
75.0
,
50.0
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30min
"
))),
(
])
"
nagg
"
,
def
test_harmSingleVarInterpolationAgg
(
data
,
params
,
expected
):
"
30Min
"
,
flagger
=
initFlagsLike
(
data
)
pd
.
Series
(
field
=
'
data
'
data
=
[
-
87.5
,
-
25.0
,
87.5
],
pre_data
=
data
.
copy
()
index
=
pd
.
date_range
(
"
2011-01-01 00:00:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30min
"
),
pre_flaggger
=
flagger
.
copy
()
),
method
,
freq
=
params
),
(
data_harm
,
flagger_harm
=
aggregate
(
data
,
field
,
flagger
,
freq
,
value_func
=
np
.
sum
,
method
=
method
)
"
bagg
"
,
assert
data_harm
[
field
].
equals
(
expected
)
"
15Min
"
,
pd
.
Series
(
data_deharm
,
flagger_deharm
=
mapToOriginal
(
data_harm
,
"
data
"
,
flagger_harm
,
method
=
"
inverse_
"
+
method
)
data
=
[
-
50.0
,
-
37.5
,
-
37.5
,
12.5
,
37.5
,
50.0
],
assert
data_deharm
[
field
].
equals
(
pre_data
[
field
])
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15min
"
),
assert
flagger_deharm
[
field
].
equals
(
pre_flaggger
[
field
])
),
),
(
@pytest.mark.parametrize
(
"
bagg
"
,
'
params, expected
'
,
"
30Min
"
,
[
pd
.
Series
(
((
"
fshift
"
,
"
15Min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
0.0
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
data
=
[
-
50.0
,
-
75.0
,
50.0
,
50.0
],
((
"
fshift
"
,
"
30Min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
0.0
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30min
"
),
((
"
bshift
"
,
"
15Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
),
((
"
bshift
"
,
"
30Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
12.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
),
((
"
nshift
"
,
"
15min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
]
((
"
nshift
"
,
"
30min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
12.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
])
for
interpolation
,
freq
,
expected
in
tests
:
def
test_harmSingleVarInterpolationShift
(
data
,
params
,
expected
):
data_harm
,
flagger_harm
=
aggregate
(
flagger
=
initFlagsLike
(
data
)
data
,
field
,
flagger
,
freq
,
value_func
=
np
.
sum
,
method
=
interpolation
field
=
'
data
'
)
pre_data
=
data
.
copy
()
assert
data_harm
[
field
].
equals
(
expected
)
pre_flagger
=
flagger
.
copy
()
data_deharm
,
flagger_deharm
=
mapToOriginal
(
method
,
freq
=
params
data_harm
,
"
data
"
,
flagger_harm
,
method
=
"
inverse_
"
+
interpolation
)
data_harm
,
flagger_harm
=
shift
(
data
,
field
,
flagger
,
freq
,
method
=
method
)
assert
data_deharm
[
field
].
equals
(
pre_data
)
assert
data_harm
[
field
].
equals
(
expected
)
assert
flagger_deharm
.
getFlags
([
field
]).
squeeze
().
equals
(
pre_flags
)
data_deharm
,
flagger_deharm
=
mapToOriginal
(
data_harm
,
"
data
"
,
flagger_harm
,
method
=
"
inverse_
"
+
method
)
tests
=
[
assert
data_deharm
[
field
].
equals
(
pre_data
[
field
])
(
assert
flagger_deharm
[
field
].
equals
(
pre_flagger
[
field
])
"
fshift
"
,
"
15Min
"
,
pd
.
Series
(
@pytest.mark.parametrize
(
"
method
"
,
[
"
time
"
,
"
polynomial
"
])
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
0.0
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
),
),
),
(
"
fshift
"
,
"
30Min
"
,
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
0.0
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
),
),
),
(
"
bshift
"
,
"
15Min
"
,
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
),
),
),
(
"
bshift
"
,
"
30Min
"
,
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
12.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
),
),
),
(
"
nshift
"
,
"
15min
"
,
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
),
),
),
(
"
nshift
"
,
"
30min
"
,
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
12.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
),
),
),
]
for
interpolation
,
freq
,
expected
in
tests
:
data_harm
,
flagger_harm
=
shift
(
data
,
field
,
flagger
,
freq
,
method
=
interpolation
)
assert
data_harm
[
field
].
equals
(
expected
)
data_deharm
,
flagger_deharm
=
mapToOriginal
(
data_harm
,
"
data
"
,
flagger_harm
,
method
=
"
inverse_
"
+
interpolation
)
assert
data_deharm
[
field
].
equals
(
pre_data
)
assert
flagger_deharm
.
getFlags
([
field
]).
squeeze
().
equals
(
pre_flags
)
@pytest.mark.parametrize
(
"
method
"
,
INTERPOLATIONS
)
def
test_gridInterpolation
(
data
,
method
):
def
test_gridInterpolation
(
data
,
method
):
freq
=
"
15min
"
freq
=
"
15min
"
data
=
data
.
squeeze
()
field
=
'
data
'
field
=
data
.
name
data
=
data
[
field
]
data
=
(
data
*
np
.
sin
(
data
)).
append
(
data
.
shift
(
1
,
"
2h
"
)).
shift
(
1
,
"
3s
"
)
data
=
(
data
*
np
.
sin
(
data
)).
append
(
data
.
shift
(
1
,
"
2h
"
)).
shift
(
1
,
"
3s
"
)
data
=
dios
.
DictOfSeries
(
data
)
data
=
dios
.
DictOfSeries
(
data
)
flagger
=
TESTFLAGGER
[
0
].
initFlags
(
data
)
flagger
=
initFlags
Like
(
data
)
# we are just testing if the interpolation gets passed to the series without causing an error:
# we are just testing if the interpolation gets passed to the series without causing an error:
interpolate
(
data
,
field
,
flagger
,
freq
,
method
=
method
,
downcast_interpolation
=
True
)
interpolate
(
data
,
field
,
flagger
,
freq
,
method
=
method
,
downcast_interpolation
=
True
)
if
method
==
"
polynomial
"
:
if
method
==
"
polynomial
"
:
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
2
,
method
=
method
,
downcast_interpolation
=
True
)
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
2
,
method
=
method
,
downcast_interpolation
=
True
)
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
10
,
method
=
method
,
downcast_interpolation
=
True
)
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
10
,
method
=
method
,
downcast_interpolation
=
True
)
@pytest.mark.parametrize
(
"
flagger
"
,
TESTFLAGGER
)
def
test_wrapper
(
data
):
def
test_wrapper
(
data
,
flagger
):
# we are only testing, whether the wrappers do pass processing:
# we are only testing, whether the wrappers do pass processing:
field
=
data
.
columns
[
0
]
field
=
'
data
'
freq
=
"
15min
"
freq
=
"
15min
"
flagger
=
flagger
.
initFlags
(
data
)
flagger
=
initFlags
Like
(
data
)
linear
(
data
,
field
,
flagger
,
freq
,
to_drop
=
None
)
linear
(
data
,
field
,
flagger
,
freq
,
to_drop
=
None
)
aggregate
(
data
,
field
,
flagger
,
freq
,
value_func
=
np
.
nansum
,
method
=
"
nagg
"
,
to_drop
=
None
)
aggregate
(
data
,
field
,
flagger
,
freq
,
value_func
=
np
.
nansum
,
method
=
"
nagg
"
,
to_drop
=
None
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment