Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
36
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
b6349c99
Commit
b6349c99
authored
4 years ago
by
Bert Palm
🎇
Browse files
Options
Downloads
Patches
Plain Diff
imporved harm tests
parent
c9b6fe73
No related branches found
No related tags found
3 merge requests
!271
Static expansion of regular expressions
,
!260
Follow-Up Translations
,
!237
Flagger Translations
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
tests/common.py
+46
-0
46 additions, 0 deletions
tests/common.py
tests/funcs/test_harm_funcs.py
+75
-37
75 additions, 37 deletions
tests/funcs/test_harm_funcs.py
with
121 additions
and
37 deletions
tests/common.py
+
46
−
0
View file @
b6349c99
...
@@ -42,3 +42,49 @@ def writeIO(content):
...
@@ -42,3 +42,49 @@ def writeIO(content):
return
f
return
f
def
checkDataFlaggerInvariants
(
data
,
flagger
,
field
,
identical
=
True
):
"""
Check all invariants that must hold at any point for
* field
* data
* flagger
* data[field]
* flagger[field]
* data[field].index
* flagger[field].index
* between data and flagger
* between data[field] and flagger[field]
Parameters
----------
data : dios.DictOfSeries
data container
flagger : Flags
flags container
field : str
the field in question
identical : bool, default True
whether to check indexes of data and flagger to be
identical (True, default) of just for equality.
"""
assert
isinstance
(
data
,
dios
.
DictOfSeries
)
assert
isinstance
(
flagger
,
Flagger
)
# all columns in data are in flagger
assert
data
.
columns
.
difference
(
flagger
.
columns
).
empty
# ------------------------------------------------------------------------
# below here, we just check on and with field
# ------------------------------------------------------------------------
assert
field
in
data
assert
field
in
flagger
assert
flagger
[
field
].
dtype
==
float
# `pd.Index.identical` also check index attributes like `freq`
if
identical
:
assert
data
[
field
].
index
.
identical
(
flagger
[
field
].
index
)
else
:
assert
data
[
field
].
index
.
equals
(
flagger
[
field
].
index
)
This diff is collapsed.
Click to expand it.
tests/funcs/test_harm_funcs.py
+
75
−
37
View file @
b6349c99
...
@@ -16,6 +16,8 @@ from saqc.funcs.resampling import (
...
@@ -16,6 +16,8 @@ from saqc.funcs.resampling import (
mapToOriginal
,
mapToOriginal
,
)
)
from
tests.common
import
checkDataFlaggerInvariants
@pytest.fixture
@pytest.fixture
def
data
():
def
data
():
...
@@ -33,6 +35,74 @@ def data():
...
@@ -33,6 +35,74 @@ def data():
return
data
return
data
@pytest.mark.parametrize
(
'
func, kws
'
,
[
(
'
linear
'
,
dict
()),
(
'
shift
'
,
dict
(
method
=
"
nshift
"
)),
(
'
interpolate
'
,
dict
(
method
=
"
spline
"
)),
(
'
aggregate
'
,
dict
(
value_func
=
np
.
nansum
,
method
=
"
nagg
"
)),
])
def
test_wrapper
(
data
,
func
,
kws
):
field
=
'
data
'
freq
=
"
15min
"
flagger
=
initFlagsLike
(
data
)
import
saqc
func
=
getattr
(
saqc
.
funcs
,
func
)
data
,
flagger
=
func
(
data
,
field
,
flagger
,
freq
,
**
kws
)
# check minimal requirements
checkDataFlaggerInvariants
(
data
,
flagger
,
field
)
assert
data
[
field
].
index
.
freq
==
pd
.
Timedelta
(
freq
)
@pytest.mark.parametrize
(
"
method
"
,
[
"
time
"
,
"
polynomial
"
])
def
test_gridInterpolation
(
data
,
method
):
freq
=
"
15min
"
field
=
'
data
'
data
=
data
[
field
]
data
=
(
data
*
np
.
sin
(
data
)).
append
(
data
.
shift
(
1
,
"
2h
"
)).
shift
(
1
,
"
3s
"
)
data
=
dios
.
DictOfSeries
(
data
)
flagger
=
initFlagsLike
(
data
)
# we are just testing if the interpolation gets passed to the series without causing an error:
res
=
interpolate
(
data
,
field
,
flagger
,
freq
,
method
=
method
,
downcast_interpolation
=
True
)
if
method
==
"
polynomial
"
:
res
=
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
2
,
method
=
method
,
downcast_interpolation
=
True
)
res
=
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
10
,
method
=
method
,
downcast_interpolation
=
True
)
# check minimal requirements
rdata
,
rflagger
=
res
checkDataFlaggerInvariants
(
rdata
,
rflagger
,
field
,
identical
=
False
)
assert
rdata
[
field
].
index
.
freq
==
pd
.
Timedelta
(
freq
)
@pytest.mark.parametrize
(
'
func, kws
'
,
[
(
'
linear
'
,
dict
()),
(
'
shift
'
,
dict
(
method
=
"
nshift
"
)),
(
'
interpolate
'
,
dict
(
method
=
"
spline
"
)),
(
'
aggregate
'
,
dict
(
value_func
=
np
.
nansum
,
method
=
"
nagg
"
)),
])
def
test_flagsSurviveReshaping
(
reshaper
):
"""
flagging -> reshaping -> test (flags also was reshaped correctly)
"""
pass
def
test_flagsSurviveInverseReshaping
():
"""
inverse reshaping -> flagging -> test (flags also was reshaped correctly)
"""
pass
def
test_flagsSurviveBackprojection
():
"""
flagging -> reshaping -> inverse reshaping -> test (flags == original-flags)
"""
pass
@pytest.mark.parametrize
(
"
reshaper
"
,
[
"
nshift
"
,
"
fshift
"
,
"
bshift
"
,
"
nagg
"
,
"
bagg
"
,
"
fagg
"
,
"
interpolation
"
])
@pytest.mark.parametrize
(
"
reshaper
"
,
[
"
nshift
"
,
"
fshift
"
,
"
bshift
"
,
"
nagg
"
,
"
bagg
"
,
"
fagg
"
,
"
interpolation
"
])
def
test_harmSingleVarIntermediateFlagging
(
data
,
reshaper
):
def
test_harmSingleVarIntermediateFlagging
(
data
,
reshaper
):
flagger
=
initFlagsLike
(
data
)
flagger
=
initFlagsLike
(
data
)
...
@@ -96,6 +166,7 @@ def test_harmSingleVarIntermediateFlagging(data, reshaper):
...
@@ -96,6 +166,7 @@ def test_harmSingleVarIntermediateFlagging(data, reshaper):
def
test_harmSingleVarInterpolationAgg
(
data
,
params
,
expected
):
def
test_harmSingleVarInterpolationAgg
(
data
,
params
,
expected
):
flagger
=
initFlagsLike
(
data
)
flagger
=
initFlagsLike
(
data
)
field
=
'
data
'
field
=
'
data
'
pre_data
=
data
.
copy
()
pre_data
=
data
.
copy
()
pre_flaggger
=
flagger
.
copy
()
pre_flaggger
=
flagger
.
copy
()
method
,
freq
=
params
method
,
freq
=
params
...
@@ -111,14 +182,14 @@ def test_harmSingleVarInterpolationAgg(data, params, expected):
...
@@ -111,14 +182,14 @@ def test_harmSingleVarInterpolationAgg(data, params, expected):
@pytest.mark.parametrize
(
@pytest.mark.parametrize
(
'
params, expected
'
,
'
params, expected
'
,
[
[
((
"
fshift
"
,
"
15Min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
0.0
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
((
"
fshift
"
,
"
30Min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
0.0
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
((
"
bshift
"
,
"
15Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
((
"
bshift
"
,
"
15Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
((
"
b
shift
"
,
"
30
Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
12
.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:
30
:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30
Min
"
))),
((
"
f
shift
"
,
"
15
Min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
0.0
,
37
.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:
45
:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15
Min
"
))),
((
"
nshift
"
,
"
15min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
((
"
nshift
"
,
"
15min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
-
25.0
,
12.5
,
37.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:45:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
15Min
"
))),
((
"
bshift
"
,
"
30Min
"
),
pd
.
Series
(
data
=
[
-
50.0
,
-
37.5
,
12.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
((
"
fshift
"
,
"
30Min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
0.0
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
((
"
nshift
"
,
"
30min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
12.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
((
"
nshift
"
,
"
30min
"
),
pd
.
Series
(
data
=
[
np
.
nan
,
-
37.5
,
12.5
,
50.0
],
index
=
pd
.
date_range
(
"
2010-12-31 23:30:00
"
,
"
2011-01-01 01:00:00
"
,
freq
=
"
30Min
"
))),
])
])
def
test_harmSingleVarInterpolationShift
(
data
,
params
,
expected
):
def
test_harmSingleVarInterpolationShift
(
data
,
params
,
expected
):
flagger
=
initFlagsLike
(
data
)
flagger
=
initFlagsLike
(
data
)
field
=
'
data
'
field
=
'
data
'
pre_data
=
data
.
copy
()
pre_data
=
data
.
copy
()
...
@@ -133,36 +204,3 @@ def test_harmSingleVarInterpolationShift(data, params, expected):
...
@@ -133,36 +204,3 @@ def test_harmSingleVarInterpolationShift(data, params, expected):
assert
flagger_deharm
[
field
].
equals
(
pre_flagger
[
field
])
assert
flagger_deharm
[
field
].
equals
(
pre_flagger
[
field
])
@pytest.mark.parametrize
(
"
method
"
,
[
"
time
"
,
"
polynomial
"
])
def
test_gridInterpolation
(
data
,
method
):
freq
=
"
15min
"
field
=
'
data
'
data
=
data
[
field
]
data
=
(
data
*
np
.
sin
(
data
)).
append
(
data
.
shift
(
1
,
"
2h
"
)).
shift
(
1
,
"
3s
"
)
data
=
dios
.
DictOfSeries
(
data
)
flagger
=
initFlagsLike
(
data
)
# we are just testing if the interpolation gets passed to the series without causing an error:
interpolate
(
data
,
field
,
flagger
,
freq
,
method
=
method
,
downcast_interpolation
=
True
)
if
method
==
"
polynomial
"
:
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
2
,
method
=
method
,
downcast_interpolation
=
True
)
interpolate
(
data
,
field
,
flagger
,
freq
,
order
=
10
,
method
=
method
,
downcast_interpolation
=
True
)
@pytest.mark.parametrize
(
'
func, kws
'
,
[
(
'
linear
'
,
dict
(
to_drop
=
None
)),
(
'
shift
'
,
dict
(
method
=
"
nshift
"
,
to_drop
=
None
)),
(
'
interpolate
'
,
dict
(
method
=
"
spline
"
)),
(
'
aggregate
'
,
dict
(
value_func
=
np
.
nansum
,
method
=
"
nagg
"
,
to_drop
=
None
)),
])
def
test_wrapper
(
data
,
func
,
kws
):
# we are only testing, whether the wrappers do pass processing:
field
=
'
data
'
freq
=
"
15min
"
flagger
=
initFlagsLike
(
data
)
import
saqc
func
=
getattr
(
saqc
.
funcs
,
func
)
func
(
data
,
field
,
flagger
,
freq
,
**
kws
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment