Skip to content
Snippets Groups Projects
Commit b91a309d authored by Peter Lünenschloß's avatar Peter Lünenschloß
Browse files

Merge branch 'interpolationDocExamples' into 'develop'

Interpolation doc examples

See merge request !608
parents 7c2a5365 97e13ef6
No related branches found
No related tags found
3 merge requests!685Release 2.4,!684Release 2.4,!608Interpolation doc examples
Pipeline #152581 passed with stages
in 6 minutes and 7 seconds
docs/resources/temp/SM1processingResults.png

58.8 KiB

SPDX-FileCopyrightText: 2021 Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
SPDX-License-Identifier: GPL-3.0-or-later
\ No newline at end of file
docs/resources/temp/SM2processingResults.png

147 KiB

SPDX-FileCopyrightText: 2021 Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
SPDX-License-Identifier: GPL-3.0-or-later
\ No newline at end of file
......@@ -185,6 +185,80 @@ class InterpolationMixin:
Returns
-------
saqc.SaQC
Examples
--------
See some examples of the keyword interplay below:
Lets generate some dummy data:
.. doctest:: interpolateInvalid
>>> data = pd.DataFrame({'data':np.array([np.nan, 0, np.nan, np.nan, np.nan, 4, 5, np.nan, np.nan, 8, 9, np.nan, np.nan])}, index=pd.date_range('2000',freq='1H', periods=13))
>>> data
data
2000-01-01 00:00:00 NaN
2000-01-01 01:00:00 0.0
2000-01-01 02:00:00 NaN
2000-01-01 03:00:00 NaN
2000-01-01 04:00:00 NaN
2000-01-01 05:00:00 4.0
2000-01-01 06:00:00 5.0
2000-01-01 07:00:00 NaN
2000-01-01 08:00:00 NaN
2000-01-01 09:00:00 8.0
2000-01-01 10:00:00 9.0
2000-01-01 11:00:00 NaN
2000-01-01 12:00:00 NaN
Use :py:meth:`~saqc.SaQC.interpolateInvalid` to do linear interpolation of up to 2 consecutive missing values:
.. doctest:: interpolateInvalid
>>> qc = saqc.SaQC(data)
>>> qc = qc.interpolateInvalid("data", limit=3, method='time')
>>> qc.data # doctest:+NORMALIZE_WHITESPACE
data |
======================== |
2000-01-01 00:00:00 NaN |
2000-01-01 01:00:00 0.0 |
2000-01-01 02:00:00 NaN |
2000-01-01 03:00:00 NaN |
2000-01-01 04:00:00 NaN |
2000-01-01 05:00:00 4.0 |
2000-01-01 06:00:00 5.0 |
2000-01-01 07:00:00 6.0 |
2000-01-01 08:00:00 7.0 |
2000-01-01 09:00:00 8.0 |
2000-01-01 10:00:00 9.0 |
2000-01-01 11:00:00 NaN |
2000-01-01 12:00:00 NaN |
<BLANKLINE>
Use :py:meth:`~saqc.SaQC.interpolateInvalid` to do linear extrapolaiton of up to 1 consecutive missing values:
.. doctest:: interpolateInvalid
>>> qc = saqc.SaQC(data)
>>> qc = qc.interpolateInvalid("data", limit=2, method='time', extrapolate='both')
>>> qc.data # doctest:+NORMALIZE_WHITESPACE
data |
======================== |
2000-01-01 00:00:00 0.0 |
2000-01-01 01:00:00 0.0 |
2000-01-01 02:00:00 NaN |
2000-01-01 03:00:00 NaN |
2000-01-01 04:00:00 NaN |
2000-01-01 05:00:00 4.0 |
2000-01-01 06:00:00 5.0 |
2000-01-01 07:00:00 NaN |
2000-01-01 08:00:00 NaN |
2000-01-01 09:00:00 8.0 |
2000-01-01 10:00:00 9.0 |
2000-01-01 11:00:00 NaN |
2000-01-01 12:00:00 NaN |
<BLANKLINE>
"""
inter_data = interpolateNANs(
self._data[field],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment