Skip to content
Snippets Groups Projects
Commit babf0373 authored by Peter Lünenschloß's avatar Peter Lünenschloß
Browse files

minor fix

parent e91c76e9
No related branches found
No related tags found
No related merge requests found
...@@ -35,7 +35,7 @@ def flagMad(data, flags, field, flagger, length, z, freq=None, **kwargs): ...@@ -35,7 +35,7 @@ def flagMad(data, flags, field, flagger, length, z, freq=None, **kwargs):
@register("Spikes_SpektrumBased") @register("Spikes_SpektrumBased")
def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', filter_window_size='3h', def flagSpikes_SpektrumBased(data, flags, field, flagger, filter_window_size='3h',
raise_factor=0.15, dev_cont_factor=0.2, noise_barrier=1, noise_window_size='12h', raise_factor=0.15, dev_cont_factor=0.2, noise_barrier=1, noise_window_size='12h',
noise_statistic='CoVar', smooth_poly_order=2, **kwargs): noise_statistic='CoVar', smooth_poly_order=2, **kwargs):
...@@ -65,16 +65,6 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil ...@@ -65,16 +65,6 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil
Since the relative variance was explicitly denoted in the formulas, the function defaults to relative variance, Since the relative variance was explicitly denoted in the formulas, the function defaults to relative variance,
but can be switched to coefficient of variance, by assignment to parameter "noise statistic". but can be switched to coefficient of variance, by assignment to parameter "noise statistic".
NOTE3: All derivatives in the reference publication are obtained by applying a Savitzky-Golay filter to the data
before differentiating. For the break detection algorithm in this publication,
some of the conditions didnt work well with smoothed derivatives.
This is because smoothing distributes the harshness of breaks and jumps over the
smoothing window and makes it "smoother".
Since just taking the differences as derivatives did work well for my empirical data set,
the parameter "diff_method" defaults to "raw". That means, that derivatives will be obtained by just using the
differences series.
You are free of course, to change this parameter to "savgol" and play around with the associated filter options.
(see parameter description below)
...@@ -84,9 +74,6 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil ...@@ -84,9 +74,6 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil
:param flags: A dataframe holding the flags/flag-entries associated with "data". :param flags: A dataframe holding the flags/flag-entries associated with "data".
:param field: Fieldname of the Soil moisture measurements field in data. :param field: Fieldname of the Soil moisture measurements field in data.
:param flagger: A flagger - object. (saqc.flagger.X) :param flagger: A flagger - object. (saqc.flagger.X)
:param diff_method: String. Method for obtaining dataseries' derivatives.
'raw': Just take series step differences (default)
'savgol': Smooth data with a Savitzky Golay Filter before differentiating.
:param filter_window_size: Offset string. Size of the filter window, used to calculate the derivatives. :param filter_window_size: Offset string. Size of the filter window, used to calculate the derivatives.
(relevant only, if: diff_method='savgol') (relevant only, if: diff_method='savgol')
:param smooth_poly_order: Integer. Polynomial order, used for smoothing with savitzk golay filter. :param smooth_poly_order: Integer. Polynomial order, used for smoothing with savitzk golay filter.
...@@ -134,9 +121,7 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil ...@@ -134,9 +121,7 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil
dataseries, data_rate = retrieveTrustworthyOriginal(getPandasData(data, field), getPandasData(flags, field), dataseries, data_rate = retrieveTrustworthyOriginal(getPandasData(data, field), getPandasData(flags, field),
flagger) flagger)
para_check_2 = checkQCParameters({'diff_method': {'value': diff_method, para_check_2 = checkQCParameters({'noise_statistic': {'value': noise_statistic,
'member': ['raw', 'savgol']},
'noise_statistic': {'value': noise_statistic,
'member': ['CoVar', 'rVar']}, 'member': ['CoVar', 'rVar']},
'filter_window_size': {'value': filter_window_size, 'filter_window_size': {'value': filter_window_size,
'type': [str], 'type': [str],
...@@ -195,14 +180,10 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil ...@@ -195,14 +180,10 @@ def flagSpikes_SpektrumBased(data, flags, field, flagger, diff_method='raw', fil
start_slice = spike - pd.Timedelta(filter_window_size) start_slice = spike - pd.Timedelta(filter_window_size)
end_slice = spike + pd.Timedelta(filter_window_size) end_slice = spike + pd.Timedelta(filter_window_size)
if diff_method == 'savgol': scnd_derivate = savgol_filter(dataseries[start_slice:end_slice],
scnd_derivate = savgol_filter(dataseries[start_slice:end_slice], window_length=smoothing_periods,
window_length=smoothing_periods, polyorder=smooth_poly_order,
polyorder=smooth_poly_order, deriv=2)
deriv=2)
if diff_method == 'raw':
scnd_derivate = dataseries[start_slice:end_slice].diff().diff()
length = scnd_derivate.size length = scnd_derivate.size
test_ratio_1 = np.abs(scnd_derivate[int((length-1) / 2)] / scnd_derivate[int((length+1) / 2)]) test_ratio_1 = np.abs(scnd_derivate[int((length-1) / 2)] / scnd_derivate[int((length+1) / 2)])
......
#! /usr/bin/env python #! /usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
from .functions import flagDispatch
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import pytest
import numpy as np
import pandas as pd
from saqc.flagger.baseflagger import BaseFlagger
from saqc.funcs.spike_detection import flagSpikes_SpektrumBased
# @pytest.fixture(scope='module')
def spiky_data():
index = pd.date_range(start='1.1.2011', end='2.1.2011', freq='5min')
spiky_series = pd.Series(np.linspace(1, 2, index.size), index=index, name='spiky_data')
spiky_series.iloc[100] = 100
spiky_series.iloc[1000] = -100
flag_assertion = [100, 1000]
return spiky_series, flag_assertion
def test_flagSpikes_SpektrumBased(spiky_data):
flagger = BaseFlagger(['NIL', 'GOOD', 'BAD'])
data = spiky_data[0]
flags = flagger.initFlags(data)
data, flag_result = flagSpikes_SpektrumBased(data, flags, 'spiky_data', flagger)
if __name__ == '__main__':
flagger = BaseFlagger(['NIL', 'GOOD', 'BAD'])
data = spiky_data()[0]
flags = flagger.initFlags(data)
data, flag_result = flagSpikes_SpektrumBased(data, flags, 'spiky_data', flagger, diff_method='savgol')
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment