Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
36
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
d7e9e789
Commit
d7e9e789
authored
4 years ago
by
Peter Lünenschloß
Browse files
Options
Downloads
Patches
Plain Diff
functions module documented
parent
a53a4128
No related branches found
Branches containing commit
No related tags found
Tags containing commit
3 merge requests
!193
Release 1.4
,
!188
Release 1.4
,
!78
doc-string doc of test functionality
Pipeline
#6064
passed with stage
in 6 minutes and 16 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
saqc/funcs/functions.py
+50
-2
50 additions, 2 deletions
saqc/funcs/functions.py
with
50 additions
and
2 deletions
saqc/funcs/functions.py
+
50
−
2
View file @
d7e9e789
...
...
@@ -595,12 +595,38 @@ def flagForceFail(data, field, flagger, **kwargs):
The fieldname of the column, holding the data-to-be-flagged.
flagger : saqc.flagger
A flagger object, holding flags and additional informations related to `data`.
"""
raise
RuntimeError
(
"
Works as expected :D
"
)
@register
def
flagUnflagged
(
data
,
field
,
flagger
,
**
kwargs
):
"""
Function sets the flagger.GOOD flag to all values flagged better then flagger.GOOD.
If there is an entry
'
flag
'
in the kwargs dictionary passed, the
function sets the kwargs[
'
flag
'
] flag to all values flagged better kwargs[
'
flag
'
]
Parameters
----------
data : dios.DictOfSeries
A dictionary of pandas.Series, holding all the data.
field : str
The fieldname of the column, holding the data-to-be-flagged.
flagger : saqc.flagger
A flagger object, holding flags and additional informations related to `data`.
kwargs : Dict
If kwargs contains
'
flag
'
entry, kwargs[
'
flag] is set, if no entry
'
flag
'
is present,
'
flagger.UNFLAGGED
'
is set.
Returns
-------
data : dios.DictOfSeries
A dictionary of pandas.Series, holding all the data.
flagger : saqc.flagger
The flagger object, holding flags and additional Informations related to `data`.
"""
flag
=
kwargs
.
pop
(
'
flag
'
,
flagger
.
GOOD
)
flagger
=
flagger
.
setFlags
(
field
,
flag
=
flag
,
**
kwargs
)
return
data
,
flagger
...
...
@@ -608,8 +634,30 @@ def flagUnflagged(data, field, flagger, **kwargs):
@register
def
flagGood
(
data
,
field
,
flagger
,
**
kwargs
):
"""
Function sets the flagger.GOOD flag to all values flagged better then flagger.GOOD.
Parameters
----------
Parameters
----------
data : dios.DictOfSeries
A dictionary of pandas.Series, holding all the data.
field : str
The fieldname of the column, holding the data-to-be-flagged.
flagger : saqc.flagger
A flagger object, holding flags and additional informations related to `data`.
Returns
-------
data : dios.DictOfSeries
A dictionary of pandas.Series, holding all the data.
flagger : saqc.flagger
The flagger object, holding flags and additional Informations related to `data`.
"""
kwargs
.
pop
(
'
flag
'
,
None
)
return
flagUnflagged
(
data
,
field
,
flagger
)
return
flagUnflagged
(
data
,
field
,
flagger
,
**
kwargs
)
@register
...
...
@@ -747,7 +795,7 @@ def flagCrossScoring(data, field, flagger, fields, thresh, cross_stat='modZscore
For fields=[f_1,f_2,...,f_N] and timestamps [t_1,t_2,...,t_K], the following steps are taken for outlier detection:
1. All timestamps t_i, where there is one f_k, with data[f_K] having no entry at t_i, are excluded from the
following process (inner
merge
of the f_i fields.)
following process (inner
join
of the f_i fields.)
2. for every 0 <= i <= K, the value m_j = median({data[f_1][t_i], data[f_2][t_i], ..., data[f_N][t_i]}) is
calculated
2. for every 0 <= i <= K, the set {data[f_1][t_i] - m_j, data[f_2][t_i] - m_j, ..., data[f_N][t_i] - m_j} is tested
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment