Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
35
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
e6adfd39
Commit
e6adfd39
authored
4 years ago
by
Peter Lünenschloß
Browse files
Options
Downloads
Patches
Plain Diff
implemented flagging back projection method
parent
39864a13
No related branches found
Branches containing commit
No related tags found
Tags containing commit
3 merge requests
!193
Release 1.4
,
!188
Release 1.4
,
!49
Dataprocessing features
Pipeline
#4655
passed with stage
in 6 minutes and 54 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
saqc/funcs/proc_functions.py
+88
-6
88 additions, 6 deletions
saqc/funcs/proc_functions.py
saqc/lib/ts_operators.py
+2
-2
2 additions, 2 deletions
saqc/lib/ts_operators.py
with
90 additions
and
8 deletions
saqc/funcs/proc_functions.py
+
88
−
6
View file @
e6adfd39
...
...
@@ -7,6 +7,13 @@ from saqc.core.register import register
from
saqc.lib.ts_operators
import
interpolateNANs
,
aggregate2Freq
,
shift2Freq
from
saqc.lib.tools
import
toSequence
METHOD2ARGS
=
{
'
inverse_fshift
'
:
(
'
backward
'
,
pd
.
Timedelta
),
'
inverse_bshift
'
:
(
'
forward
'
,
pd
.
Timedelta
),
'
inverse_nshift
'
:
(
'
nearest
'
,
lambda
x
:
pd
.
Timedelta
(
x
)
/
2
),
'
inverse_fagg
'
:
(
'
bfill
'
,
pd
.
Timedelta
),
'
inverse_bagg
'
:
(
'
ffill
'
,
pd
.
Timedelta
),
'
inverse_nagg
'
:
(
'
nearest
'
,
lambda
x
:
pd
.
Timedelta
(
x
)
/
2
)}
@register
def
proc_interpolateMissing
(
data
,
field
,
flagger
,
method
,
inter_order
=
2
,
inter_limit
=
2
,
interpol_flag
=
'
UNFLAGGED
'
,
...
...
@@ -70,6 +77,8 @@ def proc_interpolateGrid(data, field, flagger, freq, method, inter_order=2, drop
grid_index
=
pd
.
date_range
(
start
=
datcol
.
index
[
0
].
floor
(
freq
),
end
=
datcol
.
index
[
-
1
].
ceil
(
freq
),
freq
=
freq
,
name
=
datcol
.
index
.
name
)
aligned_start
=
datcol
.
index
[
0
]
==
grid_index
[
0
]
aligned_end
=
datcol
.
index
[
-
1
]
==
grid_index
[
-
1
]
datcol
=
datcol
.
reindex
(
datcol
.
index
.
join
(
grid_index
,
how
=
"
outer
"
,
)
)
...
...
@@ -105,10 +114,19 @@ def proc_interpolateGrid(data, field, flagger, freq, method, inter_order=2, drop
# ...hack done
# we might miss the flag for interpolated data grids last entry (if we miss it - the datapoint is always nan
# - just settling a convention here):
# - just settling a convention here(resulting GRID should start BEFORE first valid data entry and range to AFTER
# last valid data)):
if
inter_data
.
shape
[
0
]
>
flagscol
.
shape
[
0
]:
flagscol
=
flagscol
.
append
(
pd
.
Series
(
empty_intervals_flag
,
index
=
[
datcol
.
index
[
-
1
]]))
# Additional consistency operation: we have to block first/last interpolated datas flags - since they very
# likely represent chunk starts/ends (except data start and or end timestamp were grid-aligned before Grid
# interpolation already.)
if
np
.
isnan
(
inter_data
[
0
])
and
not
aligned_start
:
chunk_bounds
=
chunk_bounds
.
insert
(
0
,
inter_data
.
index
[
0
])
if
np
.
isnan
(
inter_data
[
-
1
])
and
not
aligned_end
:
chunk_bounds
=
chunk_bounds
.
append
(
pd
.
DatetimeIndex
([
inter_data
.
index
[
-
1
]]))
chunk_bounds
=
chunk_bounds
.
unique
()
flagger_new
=
flagger
.
initFlags
(
inter_data
).
setFlags
(
field
,
flag
=
flagscol
,
force
=
True
,
**
kwargs
)
# block chunk ends of interpolation
...
...
@@ -130,8 +148,6 @@ def proc_resample(data, field, flagger, freq, func=np.mean, max_invalid_total_d=
if
empty_intervals_flag
is
None
:
empty_intervals_flag
=
flagger
.
BAD
datcol
=
aggregate2Freq
(
datcol
,
method
,
freq
,
func
,
fill_value
=
np
.
nan
,
max_invalid_total
=
max_invalid_total_d
,
max_invalid_consec
=
max_invalid_consec_d
)
flagscol
=
aggregate2Freq
(
flagscol
,
method
,
freq
,
flag_agg_func
,
fill_value
=
empty_intervals_flag
,
...
...
@@ -146,7 +162,7 @@ def proc_resample(data, field, flagger, freq, func=np.mean, max_invalid_total_d=
@register
def
proc_shift
(
data
,
field
,
flagger
,
freq
,
method
,
drop_flags
=
None
,
empty_intervals_flag
=
None
,
**
kwargs
):
# Note: all data nans get excluded defaultly from shifting. I drop_flags is None - all BAD flagged values get
# Note: all data nans get excluded defaultly from shifting. I
f
drop_flags is None - all BAD flagged values get
# excluded as well.
data
=
data
.
copy
()
datcol
=
data
[
field
]
...
...
@@ -182,5 +198,71 @@ def proc_transform(data, field, flagger, func, **kwargs):
data
[
field
]
=
new_col
return
data
,
flagger
#@register
#def proc_projectFlags(data, field, flagger, target_field, **kwargs):
\ No newline at end of file
@register
def
proc_projectFlags
(
data
,
field
,
flagger
,
target
,
method
,
freq
=
None
,
drop_flags
=
None
,
**
kwargs
):
datcol
=
data
[
field
].
copy
()
target_datcol
=
data
[
target
].
copy
()
flagscol
=
flagger
.
getFlags
(
field
)
target_flagscol
=
flagger
.
getFlags
(
target
)
if
freq
is
None
:
freq
=
pd
.
Timedelta
(
datcol
.
index
.
freq
)
if
freq
is
pd
.
NaT
:
raise
ValueError
(
"
Nor is {} a frequency regular timeseries, neither was a frequency passed to parameter
'
freq
'
.
"
"
Dont know what to do.
"
.
format
(
field
)
)
if
method
[
-
3
:]
==
"
agg
"
:
# Aggregation - Inversion
projection_method
=
METHOD2ARGS
[
method
][
0
]
tolerance
=
METHOD2ARGS
[
method
][
1
](
freq
)
flagscol
=
flagscol
.
reindex
(
target_flagscol
.
index
,
method
=
projection_method
,
tolerance
=
tolerance
)
replacement_mask
=
flagscol
>
target_flagscol
target_flagscol
.
loc
[
replacement_mask
]
=
flagscol
.
loc
[
replacement_mask
]
if
method
[
-
5
:]
==
"
shift
"
:
# NOTE: although inverting a simple shift seems to be a less complex operation, it has quite some
# code assigned to it and appears to be more verbose than inverting aggregation -
# that ownes itself to the problem of BAD/invalid values blocking a proper
# shift inversion and having to be outsorted before shift inversion and re-inserted afterwards.
#
# starting with the dropping and its memorization:
if
drop_flags
is
None
:
drop_flags
=
flagger
.
BAD
drop_flags
=
toSequence
(
drop_flags
)
drop_mask
=
pd
.
Series
(
False
,
index
=
target_datcol
.
index
)
for
f
in
drop_flags
:
drop_mask
|=
flagger
.
isFlagged
(
field
,
flag
=
f
)
drop_mask
|=
target_datcol
.
isna
()
target_flagscol_drops
=
target_flagscol
[
drop_mask
]
target_flagscol
.
drop
(
drop_mask
[
drop_mask
].
index
,
inplace
=
True
)
# shift inversion
projection_method
=
METHOD2ARGS
[
method
][
0
]
tolerance
=
METHOD2ARGS
[
method
][
1
](
freq
)
flags_merged
=
pd
.
merge_asof
(
flagscol
,
pd
.
Series
(
target_flagscol
.
index
.
values
,
index
=
target_flagscol
.
index
,
name
=
"
pre_index
"
),
left_index
=
True
,
right_index
=
True
,
tolerance
=
tolerance
,
direction
=
projection_method
,
)
flags_merged
.
dropna
(
subset
=
[
"
pre_index
"
],
inplace
=
True
)
flags_merged
=
flags_merged
.
set_index
([
"
pre_index
"
]).
squeeze
()
# write flags to target
replacement_mask
=
flags_merged
>
target_flagscol
.
loc
[
flags_merged
.
index
]
target_flagscol
.
loc
[
replacement_mask
[
replacement_mask
].
index
]
=
flags_merged
.
loc
[
replacement_mask
]
# reinsert drops
target_flagscol
=
target_flagscol
.
reindex
(
target_flagscol
.
index
.
join
(
target_flagscol_drops
.
index
,
how
=
'
outer
'
))
target_flagscol
.
loc
[
target_flagscol_drops
.
index
]
=
target_flagscol_drops
.
values
flagger
=
flagger
.
setFlags
(
field
=
target
,
flag
=
target_flagscol
.
values
)
return
data
,
flagger
\ No newline at end of file
This diff is collapsed.
Click to expand it.
saqc/lib/ts_operators.py
+
2
−
2
View file @
e6adfd39
...
...
@@ -265,7 +265,7 @@ def aggregate2Freq(data, method, freq, agg_func, fill_value=np.nan, max_invalid_
# - resample AND groupBy do insert value zero for empty intervals if resampling with any kind of "sum" application -
# we want "fill_value" to be inserted
# - we are aggregating data and flags with this function and empty intervals usually would get assigned flagger.BAD
# flag (where resample inserts np.nan)
# flag (where resample inserts np.nan
or 0
)
data_resampler
=
data
.
resample
(
freq_string
,
base
=
base
,
closed
=
closed
,
label
=
label
)
...
...
@@ -273,7 +273,7 @@ def aggregate2Freq(data, method, freq, agg_func, fill_value=np.nan, max_invalid_
empty_intervals
=
data_resampler
.
count
()
==
0
data
=
data_resampler
.
apply
(
agg_func
)
# since loffset keyword of pandas "discharges" after one use of the resampler (pandas logic) - we correct the
# since loffset keyword of pandas
.resample
"discharges" after one use of the resampler (pandas logic) - we correct the
# resampled labels offset manually, if necessary.
if
method
==
"
nagg
"
:
data
.
index
=
data
.
index
.
shift
(
freq
=
pd
.
Timedelta
(
freq
)
/
2
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment