Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SaQC
Manage
Activity
Members
Labels
Plan
Issues
36
Issue boards
Milestones
Wiki
Code
Merge requests
8
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rdm-software
SaQC
Commits
e9c7bd86
Commit
e9c7bd86
authored
4 years ago
by
Peter Lünenschloß
Browse files
Options
Downloads
Patches
Plain Diff
smllbfx
parent
f3f011b6
No related branches found
No related tags found
4 merge requests
!193
Release 1.4
,
!188
Release 1.4
,
!49
Dataprocessing features
,
!44
Dataprocessing features
Pipeline
#3963
passed with stage
Stage: test
in 9 minutes and 4 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
saqc/funcs/spikes_detection.py
+13
-13
13 additions, 13 deletions
saqc/funcs/spikes_detection.py
with
13 additions
and
13 deletions
saqc/funcs/spikes_detection.py
+
13
−
13
View file @
e9c7bd86
...
@@ -136,7 +136,8 @@ def _expFit(val_frame, scoring_method='kNNMaxGap', n_neighbors=10, iter_start=0.
...
@@ -136,7 +136,8 @@ def _expFit(val_frame, scoring_method='kNNMaxGap', n_neighbors=10, iter_start=0.
return
val_frame
.
index
[
sorted_i
[
iter_index
:]]
return
val_frame
.
index
[
sorted_i
[
iter_index
:]]
def
_reduceMVflags
(
val_frame
,
fields
,
flagger
,
to_flag_frame
,
reduction_range
):
def
_reduceMVflags
(
val_frame
,
fields
,
flagger
,
to_flag_frame
,
reduction_range
,
reduction_drop_flagged
=
False
,
reduction_thresh
=
3.5
):
to_flag_frame
[:]
=
False
to_flag_frame
[:]
=
False
to_flag_index
=
to_flag_frame
.
index
to_flag_index
=
to_flag_frame
.
index
for
var
in
fields
:
for
var
in
fields
:
...
@@ -144,8 +145,10 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
...
@@ -144,8 +145,10 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
index_slice
=
slice
(
index
[
1
]
-
pd
.
Timedelta
(
reduction_range
),
index_slice
=
slice
(
index
[
1
]
-
pd
.
Timedelta
(
reduction_range
),
index
[
1
]
+
pd
.
Timedelta
(
reduction_range
))
index
[
1
]
+
pd
.
Timedelta
(
reduction_range
))
#test_slice = val_frame[var][index_slice].drop(np.delete(to_flag_index, index[0]), errors='ignore')
test_slice
=
val_frame
[
var
][
index_slice
]
test_slice
=
val_frame
[
var
][
index_slice
]
if
reduction_drop_flagged
:
test_slice
=
test_slice
.
drop
(
to_flag_index
,
errors
=
'
ignore
'
)
if
not
test_slice
.
empty
:
if
not
test_slice
.
empty
:
x
=
(
test_slice
.
index
.
values
.
astype
(
float
))
x
=
(
test_slice
.
index
.
values
.
astype
(
float
))
x_0
=
x
[
0
]
x_0
=
x
[
0
]
...
@@ -157,17 +160,11 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
...
@@ -157,17 +160,11 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
med_resids
=
np
.
median
(
resids
)
med_resids
=
np
.
median
(
resids
)
MAD
=
np
.
median
(
np
.
abs
(
resids
-
med_resids
))
MAD
=
np
.
median
(
np
.
abs
(
resids
-
med_resids
))
crit_val
=
0.6745
*
(
abs
(
med_resids
-
testval
))
/
MAD
crit_val
=
0.6745
*
(
abs
(
med_resids
-
testval
))
/
MAD
if
crit_val
>
3.5
:
if
crit_val
>
reduction_thresh
:
to_flag_frame
.
loc
[
index
[
1
],
var
]
=
True
to_flag_frame
.
loc
[
index
[
1
],
var
]
=
True
else
:
to_flag_frame
.
loc
[
index
[
1
],
var
]
=
True
#test_slice = dios.DictOfSeries(test_slice)
#test_flags = flagger.initFlags(test_slice)
#test_slice, test_flags = spikes_flagSlidingZscore(test_slice, var, test_flags, window=reduction_range,
#offset='15min', count=1,
#polydeg=1, z=3.5, method="modZ")
#if test_flags.isFlagged(field=var)[index[1]]:
# to_flag_frame.loc[index[1], var] = True
return
to_flag_frame
return
to_flag_frame
...
@@ -175,7 +172,8 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
...
@@ -175,7 +172,8 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
def
spikes_flagMultivarScores
(
data
,
field
,
flagger
,
fields
,
trafo
=
'
normScale
'
,
alpha
=
0.05
,
n_neighbors
=
10
,
def
spikes_flagMultivarScores
(
data
,
field
,
flagger
,
fields
,
trafo
=
'
normScale
'
,
alpha
=
0.05
,
n_neighbors
=
10
,
scoring_method
=
'
kNNMaxGap
'
,
iter_start
=
0.5
,
threshing
=
'
stray
'
,
scoring_method
=
'
kNNMaxGap
'
,
iter_start
=
0.5
,
threshing
=
'
stray
'
,
expfit_binning
=
'
auto
'
,
stray_partition
=
None
,
stray_partition_min
=
0
,
expfit_binning
=
'
auto
'
,
stray_partition
=
None
,
stray_partition_min
=
0
,
post_reduction
=
None
,
reduction_range
=
None
,
**
kwargs
):
post_reduction
=
None
,
reduction_range
=
None
,
reduction_drop_flagged
=
False
,
reduction_thresh
=
3.5
,
**
kwargs
):
trafo_list
=
trafo
.
split
(
'
,
'
)
trafo_list
=
trafo
.
split
(
'
,
'
)
if
len
(
trafo_list
)
==
1
:
if
len
(
trafo_list
)
==
1
:
...
@@ -216,7 +214,9 @@ def spikes_flagMultivarScores(data, field, flagger, fields, trafo='normScale', a
...
@@ -216,7 +214,9 @@ def spikes_flagMultivarScores(data, field, flagger, fields, trafo='normScale', a
to_flag_frame
=
pd
.
DataFrame
({
var_name
:
True
for
var_name
in
fields
},
index
=
to_flag_index
)
to_flag_frame
=
pd
.
DataFrame
({
var_name
:
True
for
var_name
in
fields
},
index
=
to_flag_index
)
if
post_reduction
:
if
post_reduction
:
to_flag_frame
=
_reduceMVflags
(
val_frame
,
fields
,
flagger
,
to_flag_frame
,
reduction_range
)
to_flag_frame
=
_reduceMVflags
(
val_frame
,
fields
,
flagger
,
to_flag_frame
,
reduction_range
,
reduction_drop_flagged
=
reduction_drop_flagged
,
reduction_thresh
=
reduction_thresh
)
for
var
in
fields
:
for
var
in
fields
:
to_flag_ind
=
to_flag_frame
.
loc
[:
,
var
]
to_flag_ind
=
to_flag_frame
.
loc
[:
,
var
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment