Skip to content
Snippets Groups Projects
Commit f3f011b6 authored by Peter Lünenschloß's avatar Peter Lünenschloß
Browse files

adjusted oddWaters unflagging behavior

parent 62d0260b
No related branches found
No related tags found
4 merge requests!193Release 1.4,!188Release 1.4,!49Dataprocessing features,!44Dataprocessing features
...@@ -42,7 +42,7 @@ def _stray(val_frame, partition_freq=None, partition_min=0, scoring_method='kNNM ...@@ -42,7 +42,7 @@ def _stray(val_frame, partition_freq=None, partition_min=0, scoring_method='kNNM
if partition.empty | (partition.shape[0] < partition_min): if partition.empty | (partition.shape[0] < partition_min):
continue continue
sample_size = partition.shape[0] sample_size = partition.shape[0]
nn_neighbors = min(n_neighbors, sample_size) nn_neighbors = min(n_neighbors, max(sample_size, 2))
resids = kNNfunc(partition.values, n_neighbors=nn_neighbors-1, algorithm='ball_tree') resids = kNNfunc(partition.values, n_neighbors=nn_neighbors-1, algorithm='ball_tree')
sorted_i = resids.argsort() sorted_i = resids.argsort()
resids = resids[sorted_i] resids = resids[sorted_i]
...@@ -145,7 +145,7 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range): ...@@ -145,7 +145,7 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
index[1] + pd.Timedelta(reduction_range)) index[1] + pd.Timedelta(reduction_range))
#test_slice = val_frame[var][index_slice].drop(np.delete(to_flag_index, index[0]), errors='ignore') #test_slice = val_frame[var][index_slice].drop(np.delete(to_flag_index, index[0]), errors='ignore')
test_slice = val_frame[var][index_slice].drop(to_flag_index, errors='ignore') test_slice = val_frame[var][index_slice]
if not test_slice.empty: if not test_slice.empty:
x = (test_slice.index.values.astype(float)) x = (test_slice.index.values.astype(float))
x_0 = x[0] x_0 = x[0]
...@@ -157,15 +157,17 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range): ...@@ -157,15 +157,17 @@ def _reduceMVflags(val_frame, fields, flagger, to_flag_frame, reduction_range):
med_resids = np.median(resids) med_resids = np.median(resids)
MAD = np.median(np.abs(resids - med_resids)) MAD = np.median(np.abs(resids - med_resids))
crit_val = 0.6745*(abs(med_resids - testval)) / MAD crit_val = 0.6745*(abs(med_resids - testval)) / MAD
if crit_val > 3.5:
to_flag_frame.loc[index[1], var] = True
test_slice = dios.DictOfSeries(test_slice) #test_slice = dios.DictOfSeries(test_slice)
test_flags = flagger.initFlags(test_slice) #test_flags = flagger.initFlags(test_slice)
test_slice, test_flags = spikes_flagSlidingZscore(test_slice, var, test_flags, window=reduction_range, #test_slice, test_flags = spikes_flagSlidingZscore(test_slice, var, test_flags, window=reduction_range,
offset='15min', count=1, #offset='15min', count=1,
polydeg=1, z=3.5, method="modZ") #polydeg=1, z=3.5, method="modZ")
if test_flags.isFlagged(field=var)[index[1]]: #if test_flags.isFlagged(field=var)[index[1]]:
to_flag_frame.loc[index[1], var] = True # to_flag_frame.loc[index[1], var] = True
return to_flag_frame return to_flag_frame
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment