Skip to content
Snippets Groups Projects
Commit fb03a2b9 authored by Juliane Geller's avatar Juliane Geller
Browse files

flag drift with scaling function

parent 3612c19f
No related branches found
No related tags found
3 merge requests!193Release 1.4,!188Release 1.4,!138WIP: Detect and reset offset
Pipeline #9792 passed with stage
in 6 minutes and 12 seconds
......@@ -4,6 +4,7 @@
from functools import partial
from inspect import signature
import dios
import numpy as np
import pandas as pd
import scipy
......@@ -13,6 +14,7 @@ import itertools
import collections
import numba
from mlxtend.evaluate import permutation_test
from scipy import stats
from scipy.cluster.hierarchy import linkage, fcluster
......@@ -955,7 +957,7 @@ def flagDriftFromNorm(data, field, flagger, fields, segment_freq, norm_spread, n
for segment in segments:
if segment[1].shape[0] <= 1:
continue
drifters = detectDeviants(data, metric, norm_spread, norm_frac, linkage_method, 'variables')
drifters = detectDeviants(segment[1], metric, norm_spread, norm_frac, linkage_method, 'variables')
for var in drifters:
flagger = flagger.setFlags(fields[var], loc=segment[1].index, **kwargs)
......@@ -969,7 +971,7 @@ def flagDriftFromReference(data, field, flagger, fields, segment_freq, thresh,
"""
The function flags value courses that deviate from a reference course by a margin exceeding a certain threshold.
The deviation is meassured by the distance function passed to parameter metric.
The deviation is measured by the distance function passed to parameter metric.
Parameters
----------
......@@ -1027,3 +1029,46 @@ def flagDriftFromReference(data, field, flagger, fields, segment_freq, thresh,
return data, flagger
def flagDriftScale(data, field, flagger, fields_scale1, fields_scale2, segment_freq, norm_spread, norm_frac=0.5,
metric=lambda x, y: scipy.spatial.distance.pdist(np.array([x, y]),
metric='cityblock')/len(x),
linkage_method='single', **kwargs):
fields = fields_scale1 + fields_scale2
data_to_flag = data[fields].to_df()
data_to_flag.dropna(inplace=True)
convert_slope = []
convert_intercept = []
for field1 in fields_scale1:
for field2 in fields_scale2:
slope, intercept, r_value, p_value, std_err = stats.linregress(data_to_flag[field1], data_to_flag[field2])
convert_slope.append(slope)
convert_intercept.append(intercept)
factor_slope = np.median(convert_slope)
factor_intercept = np.median(convert_intercept)
dat = dios.DictOfSeries()
for field1 in fields_scale1:
dat[field1] = factor_intercept + factor_slope * data_to_flag[field1]
for field2 in fields_scale2:
dat[field2] = data_to_flag[field2]
dat_to_flag = dat[fields].to_df()
segments = dat_to_flag.groupby(pd.Grouper(freq=segment_freq))
for segment in segments:
if segment[1].shape[0] <= 1:
continue
drifters = detectDeviants(segment[1], metric, norm_spread, norm_frac, linkage_method, 'variables')
for var in drifters:
flagger = flagger.setFlags(fields[var], loc=segment[1].index, **kwargs)
return data, flagger
\ No newline at end of file
......@@ -32,7 +32,7 @@ def test_flagRange(data, field, flagger):
assert (flagged == expected).all()
@pytest.mark.parametrize("flagger", TESTFLAGGER)
'''@pytest.mark.parametrize("flagger", TESTFLAGGER)
@pytest.mark.parametrize("method", ['wavelet', 'dtw'])
@pytest.mark.parametrize("pattern", [pytest.lazy_fixture("course_pattern_1"),
pytest.lazy_fixture("course_pattern_2"),] ,)
......@@ -53,7 +53,7 @@ def test_flagPattern(course_test, flagger, method, pattern):
flagger = flagger.initFlags(test_data)
data, flagger = flagPattern(test_data, "data", flagger, reference_field="pattern_data", partition_freq="days", method=method)
assert flagger.isFlagged("data")[dict_pattern["pattern_2"]].all()
'''
......@@ -226,11 +226,18 @@ def test_flagDriftFromNormal(dat, flagger):
data = dat(periods=200, peak_level=5, name='d1')[0]
data['d2'] = dat(periods=200, peak_level=10, name='d2')[0]['d2']
data['d3'] = dat(periods=200, peak_level=100, name='d3')[0]['d3']
data['d4'] = 3 + 4 * data['d1']
data['d5'] = 3 + 4 * data['d1']
flagger = flagger.initFlags(data)
data_norm, flagger_norm = flagDriftFromNorm(data, 'dummy', flagger, ['d1', 'd2', 'd3'], segment_freq="200min",
norm_spread=5)
data_ref, flagger_ref = flagDriftFromReference(data, 'd1', flagger, ['d1', 'd2', 'd3'], segment_freq="3D",
thresh=20)
data_scale, flagger_scale = flagDriftScale(data, 'dummy', flagger, ['d1', 'd3'], ['d4', 'd5'], segment_freq="3D",
thresh=20, norm_spread=5)
assert flagger_norm.isFlagged()['d3'].all()
assert flagger_ref.isFlagged()['d3'].all()
assert flagger_scale.isFlagged()['d3'].all()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment