Skip to content
Snippets Groups Projects

Bump zipp from 2.2.0 to 3.1.0

Merged WKDV Bot requested to merge dependabot/pip/zipp-3.1.0 into develop
6 files
+ 69
91
Compare changes
  • Side-by-side
  • Inline
Files
6
+ 21
11
@@ -18,12 +18,10 @@ from dios import DictOfSeries
from typing import Any
def _dslIsFlagged(flagger, var, flag=None, comparator=None):
def _dslIsFlagged(flagger, var, flag=None, comparator=">="):
"""
helper function for `flagGeneric`
"""
if comparator is None:
return flagger.isFlagged(var.name, flag=flag)
return flagger.isFlagged(var.name, flag=flag, comparator=comparator)
@@ -441,13 +439,25 @@ range_dict.keys()
@register
def flagCrossScoring(data, field, flagger, fields, thresh, cross_stat=np.median, **kwargs):
val_frame = data.loc[data.index_of("shared")].to_df()
try:
stat = getattr(val_frame, cross_stat.__name__)(axis=1)
except AttributeError:
stat = val_frame.aggregate(cross_stat, axis=1)
diff_scores = val_frame.subtract(stat, axis=0).abs()
diff_scores = diff_scores > thresh
df = data[fields].loc[data[fields].index_of('shared')].to_df()
if isinstance(cross_stat, str):
if cross_stat == 'modZscore':
MAD_series = df.subtract(df.median(axis=1), axis=0).abs().median(axis=1)
diff_scores = ((0.6745 * (df.subtract(df.median(axis=1), axis=0))).divide(MAD_series, axis=0)).abs()
elif cross_stat == 'Zscore':
diff_scores = (df.subtract(df.mean(axis=1), axis=0)).divide(df.std(axis=1), axis=0).abs()
else:
raise ValueError(cross_stat)
else:
try:
stat = getattr(df, cross_stat.__name__)(axis=1)
except AttributeError:
stat = df.aggregate(cross_stat, axis=1)
diff_scores = df.subtract(stat, axis=0).abs()
mask = diff_scores > thresh
for var in fields:
flagger = flagger.setFlags(var, diff_scores[var].values, **kwargs)
flagger = flagger.setFlags(var, mask[var], **kwargs)
return data, flagger
Loading