Skip to content
Snippets Groups Projects
Commit 029aef2e authored by Bert Palm's avatar Bert Palm 🎇
Browse files

fixedes

parent 477ad164
No related branches found
No related tags found
1 merge request!2Develop
...@@ -405,7 +405,11 @@ class DictOfSeries: ...@@ -405,7 +405,11 @@ class DictOfSeries:
def squeeze(self, axis=None): def squeeze(self, axis=None):
if axis in [0, 'index']: if axis in [0, 'index']:
raise NotImplementedError raise NotImplementedError
elif axis in [1, 'columns']:
if len(self) > 1:
return self
if axis in [1, 'columns']:
return self._data.squeeze() return self._data.squeeze()
elif axis is None: elif axis is None:
return self._data.squeeze().squeeze() return self._data.squeeze().squeeze()
......
...@@ -108,13 +108,14 @@ class _iLocIndexer(_Indexer): ...@@ -108,13 +108,14 @@ class _iLocIndexer(_Indexer):
# we do use loc instead of iloc as we get real keys. # we do use loc instead of iloc as we get real keys.
# this works, because keys keep sorted if they come # this works, because keys keep sorted if they come
# from an series-index (doesn't work with df-index) # from an series-index (doesn't work with df-index)
ser = self._data[key] ser = self._data.loc[key]
if ixalign: if ixalign:
ix = ser.index.intersection(ix.index) ix = ser.index.intersection(ix.index)
if isinstance(right, pd.Series): if isinstance(right, pd.Series):
left = ser[ix] left = ser[ix]
right, ix = align_index_by_policy(left, right) right, ix = align_index_by_policy(left, right)
ser.iloc[ix] = right ser.iloc[ix] = right
self._data.loc[key] = ser
def _get_item(self, key, ix, ixalign=False): def _get_item(self, key, ix, ixalign=False):
ser = self._data.loc[key] ser = self._data.loc[key]
...@@ -148,7 +149,7 @@ def _unpack_value(keys, ix, val): ...@@ -148,7 +149,7 @@ def _unpack_value(keys, ix, val):
# prepare value # prepare value
val = list(val) if is_iterator(val) else val val = list(val) if is_iterator(val) else val
val = val.squeeze() if is_dios_like(val) else val val = val.squeeze(axis=1) if is_dios_like(val) else val
dioslike, nlistlike = is_dios_like(val), is_nested_list_like(val) dioslike, nlistlike = is_dios_like(val), is_nested_list_like(val)
# check value # check value
......
...@@ -63,12 +63,12 @@ def b_timings(df, t0, t1, v1, v2): ...@@ -63,12 +63,12 @@ def b_timings(df, t0, t1, v1, v2):
def dios_timings(dios, t0, t1, v1, v2): def dios_timings(dios, t0, t1, v1, v2):
_t0 = time.time() _t0 = time.time()
a = dios[t0:t1, :] a = dios.loc[t0:t1, :]
_t1 = time.time() _t1 = time.time()
b = dios[:, v1] b = dios.loc[:, v1]
_t2 = time.time() _t2 = time.time()
if profile_assignment: if profile_assignment:
dios[t0:t1, v1] = dios[t0:t1, v1] * 1111 dios.loc[t0:t1, v1] = dios.loc[t0:t1, v1] * 1111
_t3 = time.time() _t3 = time.time()
timingsdf.at[rows, ('ts', 'dios')] += _t1 - _t0 timingsdf.at[rows, ('ts', 'dios')] += _t1 - _t0
...@@ -76,7 +76,6 @@ def dios_timings(dios, t0, t1, v1, v2): ...@@ -76,7 +76,6 @@ def dios_timings(dios, t0, t1, v1, v2):
timingsdf.at[rows, ('ass', 'dios')] += _t3 - _t2 timingsdf.at[rows, ('ass', 'dios')] += _t3 - _t2
return a, b, dios return a, b, dios
def gen_random_timestamps(m, M): def gen_random_timestamps(m, M):
r = (M - m) * (np.random.randint(10,90) + np.random.random()) * 0.01 r = (M - m) * (np.random.randint(10,90) + np.random.random()) * 0.01
a , b = m + r, M - r a , b = m + r, M - r
...@@ -106,22 +105,22 @@ if __name__ == '__main__': ...@@ -106,22 +105,22 @@ if __name__ == '__main__':
# max increase of of rows # max increase of of rows
# 1 = 10 # 2 = 100 # .... # 5 = 100'000 # 1 = 10 # 2 = 100 # .... # 5 = 100'000
iterations = 4 iterations = 5
runs = 10 runs = 1
cols = 10 cols = 10
profile_assignment = True profile_assignment = True
# which to calc and plot # which to calc and plot
use_df = True use_df = False
use_a = False use_a = True
use_b = False use_b = True
use_dios = True use_dios = True
# plot options # plot options
normalize_to_df = False normalize_to_df = True
plot_xlog = True plot_xlog = True
plot_ylog = False plot_ylog = True
# ######################## # ########################
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment