Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
dios
Manage
Activity
Members
Labels
Plan
Issues
11
Issue boards
Milestones
Wiki
Jira
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RDM
dios
Commits
0a80f8fe
Commit
0a80f8fe
authored
4 years ago
by
Bert Palm
🎇
Browse files
Options
Downloads
Patches
Plain Diff
private _reduce_horizontal() become public reduce_columns()
parent
2ce3840a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dios/dios.py
+54
-38
54 additions, 38 deletions
dios/dios.py
with
54 additions
and
38 deletions
dios/dios.py
+
54
−
38
View file @
0a80f8fe
...
...
@@ -195,7 +195,7 @@ class DictOfSeries(_DiosBase):
yield
idx
,
DictOfSeries
(
data
=
row
.
to_dict
(),
index
=
[
idx
])
# ------------------------------------------------------------------------------
# Broadcasting
methods and helper
# Broadcasting
and Reducing
def
for_each
(
self
,
attr_or_callable
,
**
kwds
):
"""
...
...
@@ -354,42 +354,61 @@ class DictOfSeries(_DiosBase):
raise
ValueError
(
axis
)
return
result
def
_
reduce_
horizontal
(
self
,
func
,
initial
izer_v
al
u
e
):
def
reduce_
columns
(
self
,
func
,
initial
=
None
,
skipna
=
F
al
s
e
):
"""
Reduce
values of
all columns to a single pandas.Series by a given function.
Reduce all columns to a single pandas.Series by a given function.
A given function is called on pairs of columns, and the result is used
for next pair-call. Because not all columns necessarily share the same
index, some indices (and its corresponding values) may just seen once.
Therefore, every firstly seen index
'
values are reduced against a dummy
series of the initializer_value.
Apply a function of two pandas.Series as arguments, cumulatively to all
columns, from left to right, so as to reduce the columns to a single
pandas.Series. If initial is present, it is placed before the columns
in the calculation, and serves as a default when the columns are empty.
Parameters
----------
func: function
The function must take two series and must return a single series.
Both input series will the same index and the returned one also
should have it.
initializer_value: Any
A value that is overwritten, by any(!) other value, if the
``func`` is evaluated. This is mandatory and also must apply,
if the value is not present in any of the columns!
E.g. ``False`` for ``func=lambda s1,s2: s1 | s2`` or
``0`` for ``func=max`` if all values are positive integers.
func : function
The function must take two identically indexed pandas.Series and should
return a single pandas.Series with the same index.
initial : column-label or pd.Series, default None
The series to start with. If None a dummy series is created, with the
indices of all columns and the first seen values.
skipna : bool, default False
If True, skip NaN values.
Returns
-------
pandas.Series
A series
that have a uniqu
e index
with
the
union of index
es
of all columns and the function result as values
.
A series
with the reducing result and th
e index
of
the
start seri
es
,
defined by ``initializer``
.
"""
res
=
pd
.
Series
(
data
=
initializer_value
,
index
=
self
.
index_of
(
'
all
'
))
for
d
in
self
.
_data
:
base
=
res
.
loc
[
d
.
index
]
if
len
(
base
)
>
0
:
res
.
loc
[
d
.
index
]
=
func
(
base
,
d
)
return
res
if
initial
is
None
:
value
=
pd
.
Series
(
index
=
self
.
index_of
(
'
all
'
))
for
d
in
self
.
_data
:
value
=
value
.
combine_first
(
d
)
elif
isinstance
(
initial
,
pd
.
Series
):
value
=
initial
.
copy
()
elif
initial
in
self
.
columns
:
value
=
self
.
_data
.
at
[
initial
].
copy
()
else
:
raise
ValueError
(
"
initial must be pd.Series, a column label or None
"
)
if
skipna
:
val
=
value
.
dropna
()
data
=
self
.
dropna
().
_data
else
:
val
=
value
data
=
self
.
_data
for
d
in
data
:
idx
=
val
.
index
&
d
.
index
if
len
(
idx
)
>
0
:
l
,
r
=
val
.
loc
[
idx
],
d
.
loc
[
idx
]
val
.
loc
[
idx
]
=
func
(
l
,
r
)
if
skipna
:
value
.
loc
[
val
.
index
]
=
val
return
value
# ------------------------------------------------------------------------------
# Misc methods
...
...
@@ -478,10 +497,7 @@ class DictOfSeries(_DiosBase):
return
self
.
for_each
(
pd
.
Series
.
min
,
skipna
=
skipna
)
elif
axis
in
[
1
,
'
columns
'
]:
func
=
lambda
s1
,
s2
:
s1
.
where
(
s1
<
s2
,
s2
)
res
=
self
.
_reduce_horizontal
(
func
,
np
.
inf
)
if
not
skipna
:
res
.
loc
[
self
.
isna
().
any
(
axis
=
1
)]
=
np
.
nan
return
res
return
self
.
reduce_columns
(
func
,
skipna
=
skipna
)
raise
ValueError
(
axis
)
def
max
(
self
,
axis
=
None
,
skipna
=
None
):
...
...
@@ -489,10 +505,7 @@ class DictOfSeries(_DiosBase):
return
self
.
for_each
(
pd
.
Series
.
min
,
skipna
=
skipna
)
elif
axis
in
[
1
,
'
columns
'
]:
func
=
lambda
s1
,
s2
:
s1
.
where
(
s1
>
s2
,
s2
)
res
=
self
.
_reduce_horizontal
(
func
,
-
np
.
inf
)
if
not
skipna
:
res
.
loc
[
self
.
isna
().
any
(
axis
=
1
)]
=
np
.
nan
return
res
return
self
.
reduce_columns
(
func
,
skipna
=
skipna
)
raise
ValueError
(
axis
)
# ----------------------------------------------------------------------
...
...
@@ -514,7 +527,8 @@ class DictOfSeries(_DiosBase):
return
self
.
_data
.
apply
(
all
)
elif
axis
in
[
1
,
'
columns
'
]:
func
=
lambda
s1
,
s2
:
s1
.
astype
(
bool
)
&
s2
.
astype
(
bool
)
return
self
.
_reduce_horizontal
(
func
,
True
)
init
=
pd
.
Series
(
True
,
dtype
=
bool
,
index
=
self
.
index_of
(
'
all
'
))
return
self
.
reduce_columns
(
func
,
init
)
elif
axis
is
None
:
return
self
.
_data
.
apply
(
all
).
all
()
raise
ValueError
(
axis
)
...
...
@@ -524,7 +538,8 @@ class DictOfSeries(_DiosBase):
return
self
.
_data
.
apply
(
any
)
elif
axis
in
[
1
,
'
columns
'
]:
func
=
lambda
s1
,
s2
:
s1
.
astype
(
bool
)
|
s2
.
astype
(
bool
)
return
self
.
_reduce_horizontal
(
func
,
False
)
init
=
pd
.
Series
(
False
,
dtype
=
bool
,
index
=
self
.
index_of
(
'
all
'
))
return
self
.
reduce_columns
(
func
,
init
)
elif
axis
is
None
:
return
self
.
_data
.
apply
(
any
).
any
()
raise
ValueError
(
axis
)
...
...
@@ -554,7 +569,8 @@ class DictOfSeries(_DiosBase):
return
data
.
for_each
(
'
hasnans
'
)
elif
axis
in
[
1
,
'
columns
'
]:
func
=
lambda
s1
,
s2
:
s1
.
isna
()
|
s2
.
isna
()
return
data
.
_reduce_horizontal
(
func
,
False
)
init
=
pd
.
Series
(
False
,
dtype
=
bool
,
index
=
self
.
index_of
(
'
all
'
))
return
data
.
reduce_columns
(
func
,
init
)
elif
axis
is
None
:
return
self
.
isna
(
drop_empty
=
drop_empty
)
raise
ValueError
(
axis
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment