Skip to content
Snippets Groups Projects
Commit 2bc5d621 authored by Bert Palm's avatar Bert Palm 🎇
Browse files

aloc - boolean series support

parent 01b20e25
No related branches found
No related tags found
No related merge requests found
......@@ -136,17 +136,19 @@ are treated similar, as they would passed to `.loc` (actually they are really pa
the column, otherwise nothing is selected. [1]
- *pd.Series* : align the index from the given Series with the column, what means only common indices are used. The
actual values of the series are ignored(!).
- *boolean pd.Series* : like *pd.Series* but only True values are evaluated.
False values are equivalent to missing indices. To treat a boolean series as a *normal* indexer series, as decribed
above, one can use `.aloc(usebool=False)[boolean pd.Series]`.
*special **2D**-indexer* are :
- `.aloc[boolean dios-like]` : work same like `di[boolean dios-like]` (see there).
Brief: full align, select where the index is present and the value is True.
- `.aloc[dios-like, ...]` (with Ellipsis) : Align in columns and rows, ignore values. Per common column,
the common indices are selected. The ellipsis forces to ignore the values, so a boolean dios could be given,
where, the values are not taken into account. [2]
Brief: full align, select items, where the index is present and the value is True.
- `.aloc[dios-like, ...]` (with Ellipsis) : Align in columns and rows, ignore its values. Per common column,
the common indices are selected. The ellipsis forces `aloc`, to ignore the values, so a boolean dios could be
treated as a non-boolean. Alternatively `.aloc(usebool=False)[boolean dios-like]` could be used.[2]
- `.aloc[nested list-like]` : The inner lists are used as `aloc`-*list*-row-indexer (see there) on all columns.
One list for one column, which implies, that the outer list has the same length as the number of columns.
- `.aloc(booldios=True)[boolean dios-like]` : alias for `.aloc[boolean dios-like]`
- `.aloc(booldios=False)[dios-like]` : alias for `.aloc[dios-like, ...]`
*special handling of 1D-**values***
......@@ -215,7 +217,7 @@ Empty DictOfSeries
Columns: ['a', 'b']
>>> d.aloc[d,...] # (equal to use) d.aloc(booldios=False)[d]
>>> d.aloc[d,...] # (equal to use) d.aloc(usebool=False)[d]
a | b |
======== | ===== |
0 0.0 | 1 50 |
......
......@@ -256,10 +256,10 @@ class _aLocIndexer(_Indexer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._use_bool_dios = True
self._usebool = True
def __call__(self, booldios=True):
self._use_bool_dios = booldios
def __call__(self, usebool=True):
self._usebool = usebool
return self
def __getitem__(self, key):
......@@ -380,7 +380,7 @@ class _aLocIndexer(_Indexer):
# (II) .aloc(booldios=False)[dios] or
# (III) .aloc(booldios=True)[dios]
elif _is_dios_like(key):
if self._use_bool_dios:
if self._usebool:
return keys_from_bool_dios_like(key)
else:
return keys_from_dios_like(key)
......@@ -427,7 +427,10 @@ class _aLocIndexer(_Indexer):
# row-alignable: pd.Series(), align rows to every series in colkey (columns)
if isinstance(rowkey, pd.Series):
rowkey = [self._data.at[c].index.intersection(rowkey.index) for c in colkey]
if _is_bool_indexer(rowkey) and self._usebool:
rowkey = [self._data.at[c].index.intersection(rowkey[rowkey].index) for c in colkey]
else:
rowkey = [self._data.at[c].index.intersection(rowkey.index) for c in colkey]
# handle gracefully: scalar, transform to row-slice
elif _is_hashable(rowkey):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment