-`squeeze(axis=None)` : Squeeze a 1-dimensional axis objects into scalars. Eg. a 1-column Dios is squeezes to the
underling Series. If `axis=None` it is also tried, to squeeze the possibly returned Series, from the (outer)
Dios-squeeze.
See also [pandas.DataFrame.squeeze](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.squeeze.html)
-`to_df()` : Transform the Dios to a pandas.DataFrame
-`to_string(kwargs)` : Return a string representation of the Dios.
-`apply(func, args=(), **kwds)` : apply the given function to every column in the dios eg.
-`astype()` : Cast the data to the given data type.
-`isin()` : return a boolean dios, that indicates if the corresponding value is in the given array-like
-`isna()` : Return a bolean array that is `True` if the value is a Nan-value
-`notna()` : inverse of `isnan()`
-`dropna()` : drop all Nan-values
-`index_of(method='union)`: Return a single(!) Index that is constructed from all the indexes of the columns.
-`in`
-`is`
-`len(Dios)` : return the number of columns the dios has.
`copy_empty(columns=True)`
--------------------------
Return a new DictOfSeries object, with same properties than the original.
If `columns=True`, the copy will have the same, but empty columns like the original.
**Parameter**:
-**columns : bool, default True**
Function to apply to each column or row.
**Examples**
```
>>> d
a | b | c | d |
===== | ==== | ===== | ===== |
0 0 | 2 5 | 4 7 | 6 0 |
1 7 | 3 6 | 5 17 | 7 1 |
2 14 | 4 7 | 6 27 | 8 2 |
3 21 | 5 8 | 7 37 | 9 3 |
4 28 | 6 9 | 8 47 | 10 4 |
>>> d.copy_empty()
Empty DictOfSeries
Columns: ['a', 'b', 'c', 'd']
>>> d.copy_empty(columns=False)
Empty DictOfSeries
Columns: []
```
`to_df()`
---------
Transform the Dios to a pandas.DataFrame. Missing common indices are filled with NaN's.
**Examples**
```
>>> d
a | b | c | d |
===== | ==== | ===== | ===== |
0 0 | 2 5 | 4 7 | 6 0 |
1 7 | 3 6 | 5 17 | 7 1 |
2 14 | 4 7 | 6 27 | 8 2 |
3 21 | 5 8 | 7 37 | 9 3 |
4 28 | 6 9 | 8 47 | 10 4 |
>>> d.to_df()
columns a b c d
0 0.0 NaN NaN NaN
1 7.0 NaN NaN NaN
2 14.0 5.0 NaN NaN
3 21.0 6.0 NaN NaN
4 28.0 7.0 7.0 NaN
5 NaN 8.0 17.0 NaN
6 NaN 9.0 27.0 0.0
7 NaN NaN 37.0 1.0
8 NaN NaN 47.0 2.0
9 NaN NaN NaN 3.0
10 NaN NaN NaN 4.0
```
dios.DictOfSeries.apply
-------------------------------------------------
`apply(func, axis=0, raw=False, args=(), **kwds)`
Apply the given function to every column in the dios. This is a very mighty tool to apply functions that
are defined on pandas.Series to multiple columns.
**Parameters:**
-**func : function**
Function to apply to each column or row.
-**axis : {0 or ‘index’, 1 or ‘columns’}, default 0**
Axis along which the function is applied:
- 0 or ‘index’: apply function to each column.
- ~~1 or ‘columns’: apply function to each row~~. **not implemented**
-**raw : bool, default False**
Determines if row or column is passed as a Series or ndarray object:
- `False` : passes each row or column as a Series to the function.
- `True` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance.
-**args : tuple**
Positional arguments to pass to func in addition to the array/series.
-****kwds**
Additional keyword arguments to pass as keywords arguments to func.
**Returns: Series or DataFrame**
- Result of applying func along the given axis of the DataFrame.