Skip to content
Snippets Groups Projects
MultivariateFlagging.rst 8.81 KiB
Newer Older
Peter Lünenschloß's avatar
Peter Lünenschloß committed
.. testsetup:: exampleMV

   datapath = './ressources/data/hydro_data.csv'
   maintpath = './ressources/data/hydro_maint.csv'

.. plot::
   :context:
   :include-source: False

   import matplotlib
   import saqc
   import pandas as pd
   datapath = '../ressources/data/hydro_data.csv'
   maintpath = '../ressources/data/hydro_maint.csv'
   data = pd.read_csv(datapath, index_col=0)
   maint = pd.read_csv(maintpath, index_col=0)
   maint.index = pd.DatetimeIndex(maint.index)
   data.index = pd.DatetimeIndex(data.index)
   qc = saqc.SaQC([data, maint])


Multivariate Flagging
=====================

The tutorial aims to introduce the usage of SaQC in the context of some more complex flagging and processing techniques. 
Mainly we will see how to apply Drift Corrections onto the data and how to perform multivariate flagging.


Peter Lünenschloß's avatar
Peter Lünenschloß committed
#. `Data Preparation`_
Peter Lünenschloß's avatar
Peter Lünenschloß committed
#. `Drift Correction`_
Peter Lünenschloß's avatar
Peter Lünenschloß committed
Data Preparation
Peter Lünenschloß's avatar
Peter Lünenschloß committed
First import the data (from the repository), and generate an saqc instance from it. You will need to download the `sensor
data <https://git.ufz.de/rdm-software/saqc/-/blob/develop/sphinxdoc/ressources/data/hydro_config.csv>`_ and the
`maintenance data <https://git.ufz.de/rdm-software/saqc/-/blob/develop/sphinxdoc/ressources/data/hydro_maint.csv>`_
from the `repository <https://git.ufz.de/rdm-software/saqc.git>`_ and make variables `datapath` and `maintpath` be
paths pointing at those downloaded files. Note, that the :py:class:`~saqc.SaQC` digests the loaded data in a list.
This is done, to circumvent having to concatenate both datasets in a pandas Dataframe instance, which would introduce
`NaN` values to both the datasets, wherever their timestamps missmatch. `SaQC` can handle those unaligned data
internally without introducing artificially fill values to them.
Peter Lünenschloß's avatar
Peter Lünenschloß committed

Peter Lünenschloß's avatar
Peter Lünenschloß committed
.. testcode:: exampleMV

   data = pd.read_csv(datapath, index_col=0)
   maint = pd.read_csv(maintpath, index_col=0)
   maint.index = pd.DatetimeIndex(maint.index)
   data.index = pd.DatetimeIndex(data.index)
   qc = saqc.SaQC([data, maint])  # dataframes "data" and "maint" are integrated internally
Peter Lünenschloß's avatar
Peter Lünenschloß committed

Peter Lünenschloß's avatar
Peter Lünenschloß committed
We can check out the filds, the newly generated :py:class:`~saqc.SaQC` object contains as follows:
Peter Lünenschloß's avatar
Peter Lünenschloß committed

.. doctest:: exampleMV

Peter Lünenschloß's avatar
Peter Lünenschloß committed
   >>> qc.data.columns
   Index(['sac254_raw', 'level_raw', 'water_temp_raw', 'maint'], dtype='object', name='columns')
Peter Lünenschloß's avatar
Peter Lünenschloß committed

Peter Lünenschloß's avatar
Peter Lünenschloß committed
First we should figure out, what sampling rate the data is intended to have, by acessing the *_raw* variables
constituting the sensor data. (Since :py:attr:`saqc.SaQC.data` yields a common
`pandas.DataFrame <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html>`_ object, we can index it with
the desired variables as column names and have a look at the console output to get a first impression.)

.. doctest:: exampleMV
Peter Lünenschloß's avatar
Peter Lünenschloß committed
   >>> qc.data[['sac254_raw', 'level_raw', 'water_temp_raw']] # doctest:+NORMALIZE_WHITESPACE
   columns              sac254_raw  level_raw  water_temp_raw
   Timestamp
   2016-01-01 00:02:00     18.4500    103.290            4.84
   2016-01-01 00:17:00     18.6437    103.285            4.82
   2016-01-01 00:32:00     18.9887    103.253            4.81
   2016-01-01 00:47:00     18.8388    103.210            4.80
   2016-01-01 01:02:00     18.7438    103.167            4.78
                            ...        ...             ...
   2017-12-31 22:47:00     43.2275    186.060            5.49
   2017-12-31 23:02:00     43.6937    186.115            5.49
   2017-12-31 23:17:00     43.6012    186.137            5.50
   2017-12-31 23:32:00     43.2237    186.128            5.51
   2017-12-31 23:47:00     43.7438    186.130            5.53
   <BLANKLINE>
   [70199 rows x 3 columns]

The data seems to have a fairly regular sampling rate of *15* minutes at first glance.
But checking out values around *2017-10-29*, we noitce, that the sampling rate seems not to be totally stable:

.. doctest:: exampleMV

   >>> qc.data[['sac254_raw', 'level_raw', 'water_temp_raw']]['2017-10-29 07:00:00':'2017-10-29 09:00:00'] # doctest:+NORMALIZE_WHITESPACE
   columns              sac254_raw  level_raw  water_temp_raw
   Timestamp
   2017-10-29 07:02:00     40.3050    112.570           10.91
   2017-10-29 07:17:00     39.6287    112.497           10.90
   2017-10-29 07:32:00     39.5800    112.460           10.88
   2017-10-29 07:32:01     39.9750    111.837           10.70
   2017-10-29 07:47:00     39.1350    112.330           10.84
   2017-10-29 07:47:01     40.6937    111.615           10.68
   2017-10-29 08:02:00     40.4938    112.040           10.77
   2017-10-29 08:02:01     39.3337    111.552           10.68
   2017-10-29 08:17:00     41.5238    111.835           10.72
   2017-10-29 08:17:01     38.6963    111.750           10.69
   2017-10-29 08:32:01     39.4337    112.027           10.66
   2017-10-29 08:47:01     40.4987    112.450           10.64

Those instabilities do bias most statistical evaluations and it is common practize to apply some
:doc:`resampling functions <../funcSummaries/resampling>` onto the data, to obtain a regularly spaced timestamp.
(See also the :ref:`harmonization tutorial <./cook_books/dataregularisation:data regularisation> for more informations
on that topic.)
We will apply :py:meth:`linear harmonisation <saqc.SaQC.linear>`, to interpolate pillar points of multiples of *15*
minutes linearly. Before that, we clean the data from out of range values via the :py:meth:`~saqc.SaQC.flagRange` method,
to mitigate inclusion of anomalous values in the processing result.


.. plot::
   :context:

   qc = qc.flagRange('level_raw', min=0)
   qc = qc.flagRange('water_temp_raw', min=-1, max=40)
   qc = qc.flagRange('sac254_raw', min=0, max=60)
   qc = qc.linear(['sac254_raw', 'level_raw', 'water_temp_raw'], freq='15min')
   qc.plot('sac254_raw')


* Flagging missing values via :py
* Flagging missing values via :py:func:`flagMissing <Functions.saqc.flagMissing>`.
* Flagging out of range values via :py:func:`flagRange <Functions.saqc.flagRange>`.
* Flagging values, where the Specific Conductance (\ *K25*\ ) drops down to near zero. (via :py:func:`flagGeneric <Functions.saqc.flag>`)
* Resampling the data via linear Interpolation (:py:func:`linear <Functions.saqc.linear>`).

Drift Correction
----------------

Exponential Drift
^^^^^^^^^^^^^^^^^


* The variables *SAK254* and *Turbidity* show drifting behavior originating from dirt, that accumulates on the light sensitive sensor surfaces over time.  
* The effect, the dirt accumulation has on the measurement values, is assumed to be properly described by an exponential model.
* The Sensors are cleaned periodocally, resulting in a periodical reset of the drifting effect. 
* The Dates and Times of the maintenance events are input to the :py:func:`correctDrift <Functions.saqc.correctDrift>`, that will correct the data in between any two such maintenance intervals.

Linear Long Time Drift
^^^^^^^^^^^^^^^^^^^^^^


* Afterwards, there remains a long time linear Drift in the *SAK254* and *Turbidity* measurements, originating from scratches, that accumule on the sensors glass lenses over time
* The lenses are replaced periodically, resulting in a periodical reset of that long time drifting effect
* The Dates and Times of the lenses replacements are input to the :py:func:`correctDrift <Functions.saqc.correctDrift>`, that will correct the data in between any two such maintenance intervals according to the assumption of a linearly increasing bias.

Maintenance Intervals Flagging
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* The *SAK254* and *Turbidity* values, obtained while maintenance, are, of course not trustworthy, thus, all the values obtained while maintenance get flagged via the :py:func:`flagManual <Functions.saqc.flagManual>` method.
* When maintaining the *SAK254* and *Turbidity* sensors, also the *NO3* sensors get removed from the water - thus, they also have to be flagged via the :py:func:`flagManual <Functions.saqc.flagManual>` method.

Peter Lünenschloß's avatar
Peter Lünenschloß committed
Apply Multivariate Flagging
---------------------------

Basically following the *oddWater* procedure, as suggested in *Talagala, P.D. et al (2019): A Feature-Based Procedure for Detecting Technical Outliers in Water-Quality Data From In Situ Sensors. Water Ressources Research, 55(11), 8547-8568.*


* Variables *SAK254*\ , *Turbidity*\ , *Pegel*\ , *NO3N*\ , *WaterTemp* and *pH* get transformed to comparable scales
* We are obtaining nearest neighbor scores and assigign those to a new variable, via :py:func:`assignKNNScores <Functions.saqc.assignKNNScores>`.
* We are applying the *STRAY* Algorithm to find the cut_off points for the scores, above which values qualify as outliers. (:py:func:`flagByStray <Functions.saqc.flagByStray>`)
* We project the calculated flags onto the input variables via :py:func:`assignKNNScore <Functions.saqc.assignKNNScore>`.

Postprocessing
--------------


* (Flags reduction onto subspaces)
* Back projection of calculated flags from resampled Data onto original data via :py:func: ``mapToOriginal <Functions.saqc.mapToOriginal>``